A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adenovirus-mediated transfer of the acid alpha-glucosidase gene into fibroblasts, myoblasts and myotubes from patients with glycogen storage disease type II leads to high level expression of enzyme and corrects glycogen accumulation. | LitMetric

Glycogen storage disease type II (GSD II) is an autosomal recessive disorder caused by defects in the lysosomal acid alpha-glucosidase (GAA) gene. We investigated the feasibility of using a recombinant adenovirus containing the human GAA gene under the control of the cytomegalovirus promoter (AdCMV-GAA) to correct the enzyme deficiency in different cultured cells from patients with the infantile form of GSD II. In GAA-deficient fibroblasts infected with AdCMV-GAA, transduction and transcription of the human transgene resulted in de novo synthesis of GAA protein. The GAA enzyme activity was corrected from the deficient level to 12 times the activity of normal cells. The transduced cells overexpressed the 110 kDa precursor form of GAA, which was secreted into the culture medium and was taken up by recipient cells. The recombinant GAA protein was correctly processed and was active on both an artificial substrate 4-methylumbelliferyl-alpha-D-glucopyranoside (4MUG) and glycogen. In GAA-deficient muscle cells, a significant increase in cellular enzyme level, approximately 20-fold higher than in normal cells, was also observed after viral treatment. The transduced muscle cells were also able to efficiently secrete the recombinant GAA. Moreover, transfer of the human transgene resulted in normalization of cellular glycogen content with clearance of glycogen from lysosomes, as assessed by electron microscopy, in differentiated myotubes. These results demonstrate phenotypic correction of cultured skeletal muscle from a patient with infantile-onset GSD II using a recombinant adenovirus. We conclude that adenovirus-mediated gene transfer might be a suitable model system for further in vivo studies on delivering GAA to GSD II muscle, not only by direct cell targeting but also by a combination of secretion and uptake mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/7.11.1695DOI Listing

Publication Analysis

Top Keywords

acid alpha-glucosidase
8
glycogen storage
8
storage disease
8
disease type
8
gaa
8
gaa gene
8
recombinant adenovirus
8
human transgene
8
gaa protein
8
normal cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!