Recombination acts on the genetic map, not on the physical map. On the other hand, the physical map is usually more accurate. Choice of the genetic or physical map for positional cloning by allelic association depends on the goodness of fit of data to each map under an established model. Huntington disease illustrates the usual case in which the greater reliability of physical data outweighs recombinational heterogeneity. Hemochromatosis represents an exceptional case in which unrecognized recombinational heterogeneity retarded positional cloning for a decade. The Malecot model performs well for major genes, but no approach assuming either equilibrium or disequilibrium has been validated for oligogenes contributing to common disease. In this case of greatest interest, the power of allelic association relative to linkage is less clear than for major genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21648 | PMC |
http://dx.doi.org/10.1073/pnas.95.19.11366 | DOI Listing |
PLoS One
January 2025
Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China.
Objectives: This case-control study aims to clarify the impact of single nucleotide polymorphisms (SNPs) within the P2X7 gene on susceptibility to type 2 diabetes mellitus (T2DM) and to evaluate their association with diabetic complications.
Methods: This study is comprised with 200 T2DM cases and 200 healthy controls. Seven candidate SNP loci were screened, and TaqMan-MGB real-time PCR technology was used to determine the polymorphic variants of P2X7.
Am J Reprod Immunol
February 2025
Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China.
Background: Our previous study has identified an association of a single nucleotide polymorphism (SNP) in the miR-423 gene with recurrent spontaneous abortion (RSA). The presence of additional RSA-linked SNPs in the miR-423 gene remains unclear.
Methods: We evaluated polymorphisms in the coding region of miR-423 in Han Chinese women with unexplained RSA (URSA).
Thyroid
January 2025
Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
Epidemiological data suggest the population distribution of thyrotropin (TSH) values is shifted toward lower values in self-identified Black non-Hispanic individuals compared with self-identified White non-Hispanic individuals. It is unknown whether genetic differences between individuals with genetic similarities to African reference populations (GSA) and those with similarities to European reference populations (GSE) contribute to these observed differences. We aimed to compare genome-wide associations with TSH and putative causal TSH-associated variants between GSA and GSE groups.
View Article and Find Full Text PDFClin Pharmacol Ther
January 2025
Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Clopidogrel, an anti-platelet drug, is used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic events, with African Americans (AA) suffering disproportionately. The aim of this study was to discover novel biomarkers of clopidogrel resistance in African Americans using genome and transcriptome data.
View Article and Find Full Text PDFLiver Int
February 2025
Division of Bioinformatics and Statistics, The FDA's National Center for Toxicological Research, Jefferson, Arkansas, USA.
Background And Aims: Acute liver failure (ALF) is a serious condition, typically in individuals without prior liver disease. Drug-induced ALF (DIALF) constitutes a major portion of ALF cases. Our research aimed to identify potential genetic predispositions to DIALF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!