Recent experimental studies of the denatured state and theoretical analyses of the folding landscape suggest that there are a large multiplicity of low-energy, partially folded conformations near the native state. In this report, we describe a strategy for predicting protein structure based on the working hypothesis that there are a greater number of low-energy conformations surrounding the correct fold than there are surrounding low-energy incorrect folds. To test this idea, 12 ensembles of 500 to 1,000 low-energy structures for 10 small proteins were analyzed by calculating the rms deviation of the Calpha coordinates between each conformation and every other conformation in the ensemble. In all 12 cases, the conformation with the greatest number of conformations within 4-A rms deviation was closer to the native structure than were the majority of conformations in the ensemble, and in most cases it was among the closest 1 to 5%. These results suggest that, to fold efficiently and retain robustness to changes in amino acid sequence, proteins may have evolved a native structure situated within a broad basin of low-energy conformations, a feature which could facilitate the prediction of protein structure at low resolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21612 | PMC |
http://dx.doi.org/10.1073/pnas.95.19.11158 | DOI Listing |
J Biomol Struct Dyn
January 2025
ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Government of India, Bhubaneswar, India.
The increasing incidence of bacterial infections has led to rise in antimicrobial resistance (AMR), a significant concern in public health across the globe. Henceforth, there is an urgency to address the AMR catastrophe, including developing new antibiotics, promoting the appropriate use of existing antibiotics, and investing more in research and development. Development of potent antibiotic derivatives is the call of the day.
View Article and Find Full Text PDFDalton Trans
January 2025
Chemistry Department, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland.
Stimulus-responsive molecular materials are highly desirable because of the wide range of their potential applications. In particular, switching of physical properties opens application pathways for molecular materials as sensors or actuators. Property switching in solids can be achieved by inducing single-crystal-to-single-crystal (SCSC) phase transitions.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
University of Göttingen, Institute for Physical Chemistry, Tammannstraße 6, 37077,Göttingen Germany.
Rotational spectroscopy is an excellent tool for structure determination, which can provide additional insights into local electronic structure by investigating the hyperfine pattern due to nuclear quadrupole coupling. Jet-cooled molecules are good experimental benchmark targets for electronic structure calculations, as they are free of environmental effects. We report the rotational spectra of 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, and 4-chlorobenzaldehyde, including a complete experimental description of the nuclear quadrupole coupling constants, which were previously not experimentally determined.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Technical University of Munich, TUM School of Natural Sciences, Physics Department E20, Garching 85748, Germany.
Metalloporphyrins on interfaces offer a rich playground for functional materials and hence have been subjected to intense scrutiny over the past decades. As the same porphyrin macrocycle on the same surface may exhibit vastly different physicochemical properties depending on the metal center and its substituents, it is vital to have a thorough structural and chemical characterization of such systems. Here, we explore the distinctions arising from coverage and macrocycle substituents on the closely related ruthenium octaethyl porphyrin and ruthenium tetrabenzo porphyrin on Ag(111).
View Article and Find Full Text PDFMolecules
December 2024
Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
Studies on radiosensitization of biological damage by O began about a century ago and it remains one of the most significant subjects in radiobiology. It has been related to increased production of oxygen radicals and other reactive metabolites, but only recently to the action of the numerous low-energy electrons (LEEs: 0-30 eV) produced by ionizing radiation. We provide the first complete set of G-values (yields of specific products per energy deposited) for all conformational damages induced to plasmid DNA by LEEs (G (O)) and 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!