Two distinct modes of protein-induced bending in DNA.

J Mol Biol

Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.

Published: September 1998

Crystallised "naked" DNA oligomers in the B form show significant conformational mobility, particularly at CA/TG and TA/TA steps: there is a range in Roll angle of some 15 degrees between consecutive base-pairs, and Slide and Twist are directly coupled to Roll. We call such motions "mode I". They are sufficient to enable DNA to curve gently around proteins such as histone octamers in the nucleosome particle. When DNA bends around other proteins, such as CAP and TBP, its distortion is much more severe. Although the DNA in close contact with these proteins includes the CA/TG and TA/TA steps, respectively, the mode I flexibility is not deployed: instead, a more severe "mode II" manoeuvre is observed in DNA/protein co-crystals. Mode II has several distinctive physical features. First, its range of Roll angle is much wider than for mode I. Second, the major-groove width remains more-or-less constant as Roll increases, whereas it decreases significantly as Roll increases in mode I; and this enables the major groove of the DNA to accommodate a protein moiety in its severely bent conformation. Third, the value of Slide remains more-or-less constant as Roll increases, whereas it decreases in mode I. In general, in both modes I and II, the major-groove width appears to be closely related to the Slide between base-pairs. In mode II there appears to be a definite "point pivot" on the major-groove side of the two base-pairs that constitute a dinucleotide step, formed either by the steric interlocking of propeller-twisted base-pairs or by a bifurcated hydrogen bond. Distortion of DNA in mode II seems to be an intrinsic property of the double-helical structure, since it occurs whether protein is bound on the major-groove side (e.g. CAP) or on the minor-groove side (e.g. TBP). Mode II distortion occurs in a wider range of steps than those that show the largest mode-I variation; nevertheless, "access" to mode II deformation appears to be gained via mode I distortion at particular steps CA/TG and TA/TA.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1998.1994DOI Listing

Publication Analysis

Top Keywords

ca/tg ta/ta
12
roll increases
12
mode
10
ta/ta steps
8
range roll
8
roll angle
8
major-groove width
8
remains more-or-less
8
more-or-less constant
8
constant roll
8

Similar Publications

Sequence-dependent twist-bend coupling in DNA minicircles.

Nanoscale

December 2021

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.

Looping of double-stranded DNA molecules with 100-200 base pairs into minicircles, catenanes, and rotaxanes has been suggested as a potential tool for DNA nanotechnologies. However, sharp DNA bending into a minicircle with a diameter of several to ten nanometers occurs with alterations in the DNA helical structure and may lead to defective kink formation that hampers the use of DNA minicircles, catenanes, and rotaxanes in nanoscale DNA applications. Here, we investigated local variations of a helical twist in sharply bent DNA using microsecond-long all-atom molecular dynamics simulations of six different DNA minicircles, focusing on the sequence dependence of the coupling between DNA bending and its helical twist.

View Article and Find Full Text PDF

Two distinct modes of protein-induced bending in DNA.

J Mol Biol

September 1998

Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.

Crystallised "naked" DNA oligomers in the B form show significant conformational mobility, particularly at CA/TG and TA/TA steps: there is a range in Roll angle of some 15 degrees between consecutive base-pairs, and Slide and Twist are directly coupled to Roll. We call such motions "mode I". They are sufficient to enable DNA to curve gently around proteins such as histone octamers in the nucleosome particle.

View Article and Find Full Text PDF

Sequence-dependent kinks induced in curved DNA.

J Biomol Struct Dyn

December 1990

Department of Biochemistry, University of Nevada, Reno 89557.

In certain curved DNA fragments without AA dinucleotides, the gel retardation anomaly associated with curvature passes through a maximum with fragment length, indicating length (and electric field) dependent structural transitions in the DNA. We suggest that thermally induced stereochemical kinks in DNA are stabilized in the gel, thus relieving the effects of curvature. These kinks are shown to occur specifically at CA/TG and TA/TA stacks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!