Gitelman syndrome (familial hypokalemia-hypomagnesemia syndrome) is an autosomal recessive inherited renal disorder characterized by defective tubular reabsorption of magnesium and potassium. In this study a group of 18 unrelated and 2 related Gitelman patients, collected from six different countries have been screened for mutations in the human thiazide-sensitive sodium-chloride cotransporter (SLC12A3) gene. Fourteen novel SLC12A3 mutations are presented along with six mutations described earlier, and three neutral polymorphisms. Among the tested patients are two who carry a total of three heterozygous SLC12A3 mutations. Two-thirds of the total number of mutant SLC12A3 alleles are amino acid substitutions. Most SLC12A3 gene mutations, 14 out of a total of 20, are localized at the intracellular carboxy-terminal domain of the NCCT protein. The pathogenicity of individual SLC12A3 mutations is based upon their predicted effect on SLC12A3 protein, and segregation in family members. Evolutionary conservation of substituted amino acid residues and their frequency in control chromosomes is presented. Identical mutations have been found in Gitelman families from different geographical origin, suggesting ancient mutations originating from a common ancestor. As yet, we have not found any evidence for a possible genotype-phenotype correlation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1523-1755.1998.00070.x | DOI Listing |
Medicine (Baltimore)
January 2025
The Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China.
Rationale: Gitelman syndrome (GS) is a rare hereditary electrolyte disorder caused by mutations in the SLC12A3 gene. There is limited literature on the role of hydrochlorothiazide (HCT) testing and the SLC12A3 single heterozygous mutation in the diagnosis and management of patients with GS. In addition, cases of GS with concomitant kidney stones are rare.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2024
Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, 14080 Mexico.
The field of the with no lysine kinases (WNKs) regulation of the thiazide-sensitive NaCl cotransporter (NCC) began at the start of the century with the discovery that mutations in two members of the family, WNK1 and WNK4, resulted in a condition known as Familiar Hyperkalemic Hypertension (FHHt). Since FHHt is the mirror image of Gitelman's syndrome that is caused by inactivating mutations of the SLC12A3 gene encoding NCC, it was expected that WNKs modulated NCC activity and that the increased function of the cotransporter is the pathophysiological mechanism of FFHt. This turned out to be the case.
View Article and Find Full Text PDFMed Clin (Barc)
October 2024
Servicio de Medicina Interna, Hospital Universitario Virgen de las Nieves, Granada, España.
Am J Case Rep
August 2024
Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!