Download full-text PDF |
Source |
---|
Curr Res Microb Sci
December 2024
Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248005, Uttarakhand, India.
The challenges of pollution and agro-industrial waste management have led to the development of bioconversion techniques to transform these wastes into valuable products. This has increased the focus on the sustainable and cost-efficient production of biosurfactants from agro-industrial waste. Hence, the present study investigates the production of sophorolipid biosurfactants using the yeast strain IIPL32 under submerged fermentation, employing sugarcane bagasse hydrolysate-a renewable, low-cost agro-industrial waste as the feedstock.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China.
The objective of this investigation is to overcome the difficulties in fabricating cost-effective, eco-friendly porous geopolymers (PGs) by integrating Coal fly ash (CFA) and spodumene flotation tailings (SFT). This synthesis utilizes a unique blend of CFA and SFT in a 6:4 mass ratio, with specific attention to optimizing the pore architecture to improve the PGs' efficacy. Key parameters included a modulus of 1.
View Article and Find Full Text PDFACS Sens
December 2024
Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
Conventional gas sensors encounter a significant obstacle in terms of power consumption, making them unsuitable for integration with the next generation of smartphones, wireless platforms, and the Internet of Things (IoT). Energy-efficient gas sensors, particularly self-powered gas sensors, can effectively tackle this problem. The researchers are making significant strides in advancing photovoltaic self-powered gas sensors by employing diverse materials and their compositions.
View Article and Find Full Text PDFChem Asian J
January 2025
Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute of Standards, 136, 12211, Giza, Egypt.
The alarming rise in atmospheric CO levels, primarily driven by fossil fuel combustion and industrial processes, has become a major contributor to global climate change. Effective CO capture technologies are urgently needed, particularly for the selective removal of CO from industrial gas streams, such as flue gas and biogas, which often contain impurities like N and CH. In this study, we report the design and synthesis of novel molecularly imprinted polymers (MIPs) using 4-vinylpyridine (4VP) and methacrylic acid (MAA) as functional monomers, and thiophene (Th) and formaldehyde (HC) as molecular templates.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
To tackle significant environmental and energy challenges from increased greenhouse gas emissions in the atmosphere, we propose a method that synergistically combines cost-efficient integrated systems with parallel catalysis to produce high-value chemicals from CO, NO, and other gases. We employed asymmetrically stretched InOS with symmetry-breaking indium sites as a highly efficient trifunctional catalysts for NO reduction, CO reduction, and O reduction. Mechanistic studies reveal that the symmetry-breaking at indium sites substantially improves d-band center interactions and adsorption of intermediates, thereby enhancing trifunctional catalytic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!