We describe a physiologically significant mechanism through which interleukin-6 (IL-6) and a rising ambient Ca2+ interact to regulate osteoclastic bone resorption. VOXEL-based confocal microscopy of nonpermeabilized osteoclasts incubated with anti- IL-6 receptor antibodies revealed intense, strictly peripheral plasma membrane fluorescence. IL-6 receptor expression in single osteoclasts was confirmed by in situ reverse transcriptase PCR histochemistry. IL-6 (5 ng/l to 10 microg/l), but not IL-11 (10 and 100 microg/l), reversed the inhibition of osteoclastic bone resorption induced by high extracellular Ca2+ (15 mM). The IL-6 effect was abrogated by excess soluble IL-6 receptor (500 microg/l). Additionally, IL-6 (5 pg/l to 10 microg/l) inhibited cytosolic Ca2+ signals triggered by high Ca2+ or Ni2+. In separate experiments, osteoclasts incubated in 10 mM Ca2+ or on bone released more IL-6 than those in 1.25 mM Ca2+. Furthermore, IL-6 mRNA histostaining was more intense in osteoclasts in 10 or 20 mM Ca2+ than cells in 1.25 mM Ca2+. Similarly, IL-6 receptor mRNA histostaining was increased in osteoclasts incubated in 5 or 10 mM Ca2+. Thus, while high Ca2+ enhances IL-6 secretion, the released IL-6 attenuates Ca2+ sensing and reverses inhibition of resorption by Ca2+. Such an autocrine-paracrine loop may sustain osteoclastic activity in the face of an inhibitory Ca2+ level generated locally during resorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2149353 | PMC |
http://dx.doi.org/10.1083/jcb.142.5.1347 | DOI Listing |
Can J Gastroenterol Hepatol
December 2024
Department of Infectious Diseases, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Aims: Carboxylesterase (Ces)1f is implicated in protection against hepatic inflammation, but it is unclear whether the enzyme has an influence in polarization of Kupffer cells (KCs), the innate immune cells mediating hepatic inflammatory injury including acute liver failure (ALF). In the present study, we aim to explore KC polarization induced by Ces1f in mice with lipopolysaccharide/D-galactosamine (LPS/D-GalN)-induced ALF. We adopted a novel delivery system, β-1,3-D-glucan-encapsulated Endoporter-siRNA particles, to specifically target KC Ces1f knockdown via tail vein injection in mice.
View Article and Find Full Text PDFCardiovasc Pathol
December 2024
Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa.
Background: Interleukin-6 (IL-6) is an attractive therapeutic target due to its diverse roles in the pathogenesis of conditions characterized by systemic inflammation. IL-6 has also been implicated in the pathophysiology of heart failure. This study aimed to investigate the impact of IL-6 receptor blockade with tocilizumab on the molecular pathways underlying systemic inflammation-induced left ventricular (LV) dysfunction in a collagen-induced arthritis (CIA) rat model.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
Interleukin-6 (IL-6) is a major pro-inflammatory cytokine that demonstrates a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions.
View Article and Find Full Text PDFSci Rep
December 2024
Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China.
MYD88 is an IL-6 primary response gene and, its upregulation of expression has been shown to be a poor prognostic factor in epithelial ovarian cancer (EOC). We investigated the effects of CpG methylation at the proximal promoter/5'UTR and IL-6/SP1/IRF1 signaling on upregulation of MYD88 and prognosis in EOC. We assessed CpG methylation at the proximal promoter/5'UTR of MYD88 using bisulfite sequencing/PCR in 103 EOC patients, 28 normal ovarian tissues and two EOC cell lines with differential expression of MYD88 and identified the impact of the level of CpG methylation on MYD88 upregulation by SP1/IRF1 with knockdown or blockade of IL-6.
View Article and Find Full Text PDFExp Mol Pathol
December 2024
Rheumatology Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari, Bari, Italy.
Interleukin-6 (IL-6) is a relevant cytokine in rheumatoid arthritis (RA) pathogenesis, potentially activating Janus kinases (JAK)-1, -2, and tyrosine kinase 2 (TYK2), and thus, three signal transducer and activator of transcription (STAT)-1, -3 or - 5 pathways. This pilot study aims to explore differences in phosphorylated (p)STAT3 levels among patients with RA, those not classified as RA (nRA), and healthy donors (HD), providing some clues on the relative contribution of each JAK protein to the downstream of the IL-6-induced STAT3 pathway. Clinical data and blood samples from 80 subjects (41 RA, 14 nRA, and 25 HD) were collected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!