Muscle spindles are skeletal muscle sensory organs that provide axial and limb position information (proprioception) to the central nervous system. Spindles consist of encapsulated muscle fibers (intrafusal fibers) that are innervated by specialized motor and sensory axons. Although the molecular mechanisms involved in spindle ontogeny are poorly understood, the innervation of a subset of developing myotubes (type I) by peripheral sensory afferents (group Ia) is a critical event for inducing intrafusal fiber differentiation and subsequent spindle formation. The Egr family of zinc-finger transcription factors, whose members include Egr1 (NGFI-A), Egr2 (Krox-20), Egr3 and Egr4 (NGFI-C), are thought to regulate critical genetic programs involved in cellular growth and differentiation (refs 4-8, and W.G.T. et al., manuscript submitted). Mice deficient in Egr3 were generated by gene targeting and had gait ataxia, increased frequency of perinatal mortality, scoliosis, resting tremors and ptosis. Although extrafusal skeletal muscle fibers appeared normal, Egr3-deficient animals lacked muscle spindles, a finding that is consistent with their profound gait ataxia. Egr3 was highly expressed in developing muscle spindles, but not in Ia afferent neurons or their terminals during developmental periods that coincided with the induction of spindle morphogenesis by sensory afferent axons. These results indicate that type I myotubes are dependent upon Egr3-mediated transcription for proper spindle development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/1757 | DOI Listing |
Purpose: Fibrosis of muscle spindles (sensory organs) in back muscles induced by intervertebral disc (IVD) degeneration could limit transmission of muscle stretch to the sensory receptor and explain the proprioceptive deficits common in back pain. Exercise reduces back muscles fibrosis. This study investigated whether targeted muscle activation via neurostimulation reverses or resolves muscle spindle fibrosis in a model of IVD injury.
View Article and Find Full Text PDFCompr Physiol
December 2024
School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances.
View Article and Find Full Text PDFNature
December 2024
Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK.
Exp Physiol
November 2024
School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
J Muscle Res Cell Motil
November 2024
PAS, Section for Physiology, Department for Veterinary and Animal Sciences (IVH), Faculty of Health & Medical Sciences, University of Copenhagen, Dyrlaegevej 100, Frederiksberg C, 1870, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!