Transgenic models in renal tubular physiology.

Exp Nephrol

Institut National de la Santé et de la Recherche Médicale, U478, Faculté de Médecine Xavier-Bichat, Université Paris VII, Paris, France.

Published: November 1998

Animal transgenesis has proven to be useful for physiological as well as physiopathological studies. Besides the classical approach based on the random integration of a DNA construct in the mouse genome, gene targeting can be achieved using totipotent embryonic stem (ES) cells for targeted transgenesis. Transgenic mice are then derived from the transgenic ES cells. This allows the introduction of null mutations in the genome (so-called knock-out) or the control of the transgene expression by the endogenous regulatory sequences of the gene of interest (so-called knock-in). Development of these transgenic animals leads to a better understanding of the cellular function of many genes or to the generation of animal models for human diseases. The purpose of this short review is to describe animal models in renal tubular physiopathology. Recent progresses will allow the generation of animal models with conditional expression of the transgene of interest or with a conditional gene mutation. This permits spatial and temporal control of the expression of the transgene or of the mutation. This should allow the generation of models suitable for physiological analysis or closer to disease state.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000020553DOI Listing

Publication Analysis

Top Keywords

animal models
12
models renal
8
renal tubular
8
generation animal
8
allow generation
8
expression transgene
8
transgenic
4
transgenic models
4
tubular physiology
4
animal
4

Similar Publications

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

PMN-MDSCs are responsible for immune suppression in anti-PD-1 treated TAP1 defective melanoma.

Clin Transl Oncol

January 2025

Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.

Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!