1. Inhibition of inositol 1,4,5-trisphosphate (IP3) receptor-mediated Ca2+ release by cGMP was examined in intact rat megakaryocytes, by using a combination of single cell fluorescence microscopy to monitor intracellular free calcium ([Ca2+]i) and flash photolysis of caged second messengers. 2. Sodium nitroprusside (SNP), a nitric oxide (NO) donor, and the hydrolysis-resistant cGMP analogue 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (pCPT-cGMP) inhibited Ca2+ release induced by photolysis of caged IP3. Neither of them affected the rate of Ca2+ removal from the cytoplasm following photolysis of caged Ca2+. 3. Photolysis of the caged NO donor 3-morpholinosydnonimine (SIN-1) during agonist-induced [Ca2+]i oscillations inhibited Ca2+ release without affecting the rate of Ca2+ uptake and/or extrusion. 4. We conclude that the inhibition of IP3-induced Ca2+ release is the principal mechanism of NO-cGMP-dependent inhibition of [Ca2+]i mobilization. 5. IPG, a specific peptide inhibitor of cGMP-dependent protein kinase (cGMP-PK), blocked the inhibitory effect of pCPT-cGMP, indicating that the inhibition of IP3-induced Ca2+ release by pCPT-cGMP is mediated by cGMP-PK. However, the simultaneous application of both IPG and IP20, a specific peptide inhibitor of cAMP-dependent protein kinase (cAMP-PK), was required to block the inhibitory effect of SNP. These data strongly suggest that NO-cGMP-dependent inhibition of [Ca2+]i mobilization is mediated via the activation of both cGMP-PK and cAMP-PK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2231186PMC
http://dx.doi.org/10.1111/j.1469-7793.1998.089bf.xDOI Listing

Publication Analysis

Top Keywords

ca2+ release
24
photolysis caged
16
ip3-induced ca2+
12
ca2+
9
intact rat
8
rat megakaryocytes
8
camp-dependent protein
8
inhibited ca2+
8
rate ca2+
8
inhibition ip3-induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!