Mutant Dictyostelium cells lacking any of the component polypeptides of myosin II exhibit developmental defects. To define myosin's role in establishing Dictyostelium's developmental pattern, we have rescued myosin function in a myosin regulatory light chain null mutant (mlcR-) using cell-type-specific promoters. While mlcR- cells fail to progress beyond the mound stage, expression of RLC from the prestalk promoter, ecmA, produces culminants with normal stalks but with defects in spore cell localization. When GFP-marked prestalk and prespore cells expressing ecmA-RLC are mixed with wild-type cells, the mislocalization of prestalk cells, but not prespore cells, is rescued. Time-lapse video recording of ecmA-RLC cells showed that the posterior prespore zone failed to undergo a contraction important for the upward movement of prespore cells. Prespore cells marked with green fluorescent protein (GFP) failed to move toward the tip with the spiral motion typical of wild type. In contrast, expression of RLC in prespore cells using the psA promoter produced balloon-like structures reminiscent of sorocarps but lacking stalks. GFP-labeled prespore cells showed a spiral movement toward the top of the structures. Expression of RLC from the psA promoter restores the normal localization of psA-GFP cells, but not ecmA-GFP cells. These results define two distinct, myosin-dependent movements that are required for establishing a Dictyostelium fruiting body: stalk extension and active movement of the prespore zone that ensures proper placement of the spores atop the stalk. The approach used in these studies provides a direct means of testing the role of cell motility in distinct cell types during a morphogenetic program.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.125.19.3895 | DOI Listing |
Exp Cell Res
January 2025
School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. Electronic address:
Translationally controlled tumor protein (TCTP) is a well conserved and ubiquitously expressed multifunctional protein found in many organisms and is involved in many pathophysiological processes like cell proliferation, differentiation, development and cell death. The role of TCTP in anti-apoptosis and cancer metastasis makes it a promising candidate for cancer therapy. Dictyostelium discoideum, a protist, has two isoforms (TCTP1 and TCTP2, now referred to as TPT1 and TPT2) of which we have earlier elucidated TPT1.
View Article and Find Full Text PDFOpen Res Eur
December 2024
School of Life Sciences, University of Dundee School of Life Sciences, Dundee, Scotland, DD15EH, UK.
Background: Dictyostelia are soil amoebas that aggregate to form fruiting bodies with spores and stalk cells in response to starvation. Where known, species across the dictyostelid phylogeny use secreted cAMP, detected by cAMP receptors (cARs) to induce the differentiation of spores and to organize fruiting body construction. However, recent deletion of the single of ) left both its fruiting bodies and spores intact.
View Article and Find Full Text PDFJ Sci Food Agric
August 2024
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Background: Browning is the key problem hindering the industrialization of pear wine. The use of high-yield glutathione Saccharomyces cerevisiae in the fermentation of pear wine can inhibit browning. Glutathione reductase (GR) can ensure the reduction of glutathione.
View Article and Find Full Text PDFBiol Cell
May 2024
School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
Background Information: Two pore channels (TPCs) are voltage-gated ion channel superfamily members that release Ca from acidic intracellular stores and are ubiquitously present in both animals and plants. Starvation initiates multicellular development in Dictyostelium discoideum. Increased intracellular calcium levels bias Dictyostelium cells towards the stalk pathway and thus we decided to analyze the role of TPC2 in development, differentiation, and autophagy.
View Article and Find Full Text PDFJ Bacteriol
March 2024
Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
is a filamentous bacterium that differentiates into terminal sporangia, each containing a few hundred spores. Previously, we reported that a cell wall-hydrolyzing -acetylglucosaminidase, GsmA, is required for the maturation process of sporangiospores in ; sporangia of the null mutant (Δ) strain released chains of 2-20 spores under sporangium dehiscence-inducing conditions. In this study, we identified and characterized a putative cell wall hydrolase (AsmA) that is also involved in sporangiospore maturation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!