LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation.

Immunity

Section on Lymphocyte Signaling, Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5430, USA.

Published: August 1998

The linker molecule LAT is a critical substrate of the tyrosine kinases activated upon TCR engagement. Phosphorylated LAT binds Grb2, PLC-gamma1, and other signaling molecules. We demonstrate that human LAT is palmitoylated and that palmitoylated LAT predominantly localizes into glycolipid-enriched microdomains (GEMs). Although the LAT transmembrane domain is sufficient for membrane localization, palmitoylation at C26 and C29 is essential for efficient partitioning into GEMs. LAT palmitoylation is necessary for its tyrosine phosphorylation. After T cell activation, most tyrosine-phosphorylated LAT molecules and a fraction of PLC-gamma1 and other signaling molecules are present in GEMs. LAT is central to T cell activation and is a novel linker molecule shown to require targeting to membrane microdomains for signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1074-7613(00)80606-8DOI Listing

Publication Analysis

Top Keywords

cell activation
12
gems lat
12
lat
9
lat palmitoylation
8
tyrosine phosphorylation
8
phosphorylation cell
8
linker molecule
8
plc-gamma1 signaling
8
signaling molecules
8
palmitoylation essential
4

Similar Publications

Anaerobic probiotics-in situ Se nanoradiosensitizers selectively anchor to tumor with immuno-regulations for robust cancer radio-immunotherapy.

Biomaterials

January 2025

Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:

Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.

View Article and Find Full Text PDF

Efficient synthesis of coumarin based triazole linked O-glycoconjugates as new bio-active glycohybrids.

Carbohydr Res

January 2025

Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. Electronic address:

Glycohybrids are biologically significant molecules with variety of biological functions and are found as structural motifs in numerous natural products. Here, we report the synthesis of various new coumarin-based O-glycoconjugates as glycohybrids that are chirally enriched and bridged by 1,2,3-triazoles ring system. The1,2,3-triazoles bridging was done via CuAAC click-chemistry.

View Article and Find Full Text PDF

Stress and telomere length in leukocytes: Investigating the role of GABRA6 gene polymorphism and cortisol.

Psychoneuroendocrinology

January 2025

Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium. Electronic address:

Telomere length (TL) is considered a biomarker of aging, and short TL in leukocytes is related to age and stress-related health problems. Cumulative lifetime stress exposure has also been associated with shorter TL and age-related health problems, but the mechanisms are not well understood. We tested in 108 individuals whether shorter TL in leukocytes is observed in individuals with the GABRA6 TT genotype, which has been associated with dysregulation of hypothalamic-pituitary-adrenal axis activity (the main biological stress system) compared to the CC genotype.

View Article and Find Full Text PDF

The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.

View Article and Find Full Text PDF

Mina53 catalyzes arginine demethylation of p53 to promote tumor growth.

Cell Rep

January 2025

Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China. Electronic address:

Arginine methylation is a common post-translational modification that plays critical roles in many biological processes. However, the existence of arginine demethylases that remove the modification has not been fully established. Here, we report that Myc-induced nuclear antigen 53 (Mina53), a member of the jumonji C (JmjC) protein family, is an arginine demethylase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!