The presence of native glycogen in photoreceptor cells of the rat retina has not been identified in the literature. We have studied this ultracytochemically. After perfusion with glutaraldehyde fixative, the eyes were enucleated, and the retinal tissues, postfixed with OsO4, were embedded in epoxy resin. Some tissues were treated with saliva before postfixation. Ultrathin sections, stained by the periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) method or with uranyl acetate and lead citrate, were examined by electron microscopy. On routinely stained sections, glycogen particles seemed to be absent in the cytoplasmic matrix of the photoreceptor cells because they were indistinguishable from the numerous ribosomes. This was due to a similarity in size and electron density. After PA-TCH-SP staining, fine electron-dense reaction products appeared on small cytoplasmic particles (but not on ribosomes) in the inner segments, perikarya and synaptic terminals of a subpopulation of photoreceptor cells. These particles, 15-25 nm in diameter, were identified as beta-particles of glycogen because of their susceptibility to enzyme digestion. The glycogen-rich photoreceptor cells were thought to be cone cells by reasons of their morphological features, such as synaptic terminals, nuclei and outer segments. These results suggest that the cone, but not the rod, photoreceptor cells in the rat contain abundant glycogen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0940-9602(98)80031-9DOI Listing

Publication Analysis

Top Keywords

photoreceptor cells
24
cells rat
12
cone rod
8
rod photoreceptor
8
rat retina
8
synaptic terminals
8
cells
7
photoreceptor
6
glycogen
5
ultracytochemical demonstration
4

Similar Publications

Report of a Rare Syndromic Retinal Dystrophy: Asphyxiating Thoracic Dystrophy (Jeune Syndrome).

Turk J Ophthalmol

January 2025

İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Ophthalmology, İstanbul, Türkiye.

Jeune syndrome (JS), first described by Jeune as asphyxiating thoracic dystrophy, is an autosomal recessive osteochondrodysplasia with characteristic skeletal abnormalities and variable renal, hepatic, pancreatic, and ocular complications. Approximately 1 in every 100,000 to 130,000 babies is born with JS. Most patients with JS have respiratory distress due to inadequate lung development and many lose their lives due to respiratory failure.

View Article and Find Full Text PDF

Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous disorders characterized by progressive photoreceptor degeneration and irreversible vision loss. MicroRNAs (miRNAs), a class of endogenous non-coding RNAs with post-transcriptional regulatory properties, are known to play a major role in retinal function, both in physiological and pathological conditions. Given their ability to simultaneously modulate multiple molecular pathways, miRNAs represent promising therapeutic tools for disorders with high genetic heterogeneity, such as IRDs.

View Article and Find Full Text PDF

Previously we reported color matches measured in young adults using a newly developed multi-wavelength LED-based visual trichromator with which we estimated their individual L-, M- and S-cone spectral sensitivities. Here, we extend those measurements to include 70 additional observers aged between 8 to 80 years. As in our previous work, a series of color matching measurements were made to a reference white.

View Article and Find Full Text PDF

Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.

View Article and Find Full Text PDF

A Y178C rhodopsin mutation causes aggregation and comparatively severe retinal degeneration.

Cell Death Discov

January 2025

Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.

Rhodopsin is the light-activated G protein-coupled receptor that initiates vision in photoreceptor cells of the retina. Numerous mutations in rhodopsin promote receptor misfolding and aggregation, causing autosomal dominant retinitis pigmentosa, a progressive retinal degenerative disease. The mechanism by which these mutations cause photoreceptor cell death, and the role aggregation plays in this process is still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!