Members of different voltage-gated K+ channel subfamilies usually do not form heteromultimers. However, coassembly between Shaker and ether-à-go-go (eag) subunits, members of two distinct K+ channel subfamilies, was suggested by genetic and functional studies (Zhong and Wu. 1991. Science. 252: 1562-1564; Chen, M.-L., T. Hoshi, and C.-F. Wu. 1996. Neuron. 17:535-542). We investigated whether Shaker and eag form heteromultimers in Xenopus laevis oocytes using electrophysiological and biochemical approaches. Coexpression of Shaker and eag subunits produced K+ currents that were virtually identical to the sum of separate Shaker and eag currents, with no change in the kinetics of Shaker inactivation. According to the results of dominant negative and reciprocal coimmunoprecipitation experiments, the Shaker and eag proteins do not interact. We conclude that Shaker and eag do not coassemble to form heteromultimers in Xenopus oocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299802PMC
http://dx.doi.org/10.1016/S0006-3495(98)74046-9DOI Listing

Publication Analysis

Top Keywords

shaker eag
20
form heteromultimers
12
shaker
8
shaker ether-à-go-go
8
xenopus oocytes
8
channel subfamilies
8
eag subunits
8
heteromultimers xenopus
8
eag
6
ether-à-go-go channel
4

Similar Publications

Repellency, toxicity, and physiological actions of low molecular weight basic amines in mosquitoes.

Pest Manag Sci

November 2024

Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA.

Background: This study investigated the behavioral responses and toxicity of three basic amines: 1-methylpiperazine, 1-methylpyrrolidine, and triethylamine (TEA), compounds suggested previously to be anosmic in vapor exposures to caged mosquitoes.

Results: These compounds showed repellency of Aedes aegypti mosquitoes, followed by flightlessness, knockdown, and paralysis, all increasing with exposure time and dosage. Electrophysiological experiments showed a blocking effect on nerve discharge of the Drosophila melanogaster larval central nervous system (CNS) with little evidence of hyperexcitation.

View Article and Find Full Text PDF

SIK3 and Wnk converge on Fray to regulate glial K+ buffering and seizure susceptibility.

PLoS Genet

January 2023

Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America.

Glial cells play a critical role in maintaining homeostatic ion concentration gradients. Salt-inducible kinase 3 (SIK3) regulates a gene expression program that controls K+ buffering in glia, and upregulation of this pathway suppresses seizure behavior in the eag, Shaker hyperexcitability mutant. Here we show that boosting the glial SIK3 K+ buffering pathway suppresses seizures in three additional molecularly diverse hyperexcitable mutants, highlighting the therapeutic potential of upregulating glial K+ buffering.

View Article and Find Full Text PDF

Glia modulate neuronal excitability and seizure sensitivity by maintaining potassium and water homeostasis. A salt inducible kinase 3 (SIK3)-regulated gene expression program controls the glial capacity to buffer K and water in , however upstream regulatory mechanisms are unknown. Here, we identify an octopaminergic circuit linking neuronal activity to glial ion and water buffering.

View Article and Find Full Text PDF

Potassium channels, which are the most diverse group of the ion channel family, play an important role in the repolarization of cardiomyocytes. Recent studies showed that potassium channels, such as KCNQ and HERG/eag, play an important role in regulating adult heart function through shaping the action potential and maintaining the rhythm of cardiac contraction. The potassium channel protein Shaker is the first voltage-gated potassium channel found in Drosophila to maintain the electrical excitability of neurons and muscle cells, but its role in adult cardiac function is still unclear.

View Article and Find Full Text PDF

EAG ( or ) are a subfamily of the voltage-gated potassium (Kv) channels. Like for all potassium channels, opening of EAG channels drives the membrane potential toward its equilibrium value for potassium, thus setting the resting potential and repolarizing action potentials. As voltage-dependent channels, they switch between open and closed conformations (gating) when changes in membrane potential are sensed by a voltage sensing domain (VSD) which is functionally coupled to a pore domain (PD) containing the permeation pathway, the potassium selectivity filter, and the channel gate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!