The use of cardiomyocyte cell culture models allows the identification of various cell mediators that bring about changes in subcellular structures and gene expression associated with hypertrophy. The effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), and triiodothyronine (T3) on gene expression and on the structural organization of myofibrillar and cytoskeletal proteins were compared in adult atrial (aARC) and ventricular (vARC) as well as in neonatal ventricular rat cardiomyocytes (vNRC) in long-term culture. Structural changes were evaluated by confocal microscopy and correlated to biochemical alterations. In vARC, IGF-I enhanced myofibrillar growth, whereas bFGF or T3 restricted sarcomere assembly to the central cell area, forming a sharp boundary in more than 50% of the cells. However, myosin occurred both in the cross-striated myofibrillar structures and in patches running along the nonsarcomeric fibrillar structures (also called stress fiber-like structures) in the cell periphery. In cells treated with either bFGF or T3, the expression of alpha-smooth muscle actin (alpha-sm actin) was greatly increased. This actin isoform was incorporated mainly into the nonsarcomeric contractile structures outside the area where myofibrils ended abruptly. alpha-sm actin protein increased up to 14- to 17-fold while the mRNA showed a moderate increase of 2- to 4-fold. This suggests that alpha-sm actin is mainly regulated at the translational or posttranslational level. In contrast, the cytoskeletal proteins alpha-actinin and vinculin increased only moderately (less than 2-fold) but also showed a relocalization in cells with restricted myofibrils. In aARC and in vNRC, alpha-sm actin was only moderately upregulated by bFGF or T3 and no drastic morphological changes were observed. In conclusion, IGF-I, bFGF, and T3 induced characteristic structural phenotypes depending on the type of cardiomyocyte. Large amounts of alpha-sm actin as expressed in bFGF and T3 treated vARC seem to be incompatible with sarcomere assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jsbi.1998.3981DOI Listing

Publication Analysis

Top Keywords

alpha-sm actin
20
nonsarcomeric contractile
8
contractile structures
8
gene expression
8
cytoskeletal proteins
8
sarcomere assembly
8
actin
7
structures
6
bfgf
6
alpha-sm
5

Similar Publications

2',3',4'‑trihydroxyflavone (2‑D08), a SUMO E2 inhibitor, has several biological functions, including anticancer activity, but its effects on uterine leiomyosarcoma (Ut‑LMS) are unknown. The anticancer activity of 2‑D08 was explored in an model using SK‑LMS‑1 and SK‑UT‑1B cells (human Ut‑LMS cells). Treatment with 2‑D08 inhibited cell viability in a dose‑ and time‑dependent manner and significantly inhibited the colony‑forming ability of Ut‑LMS cells.

View Article and Find Full Text PDF

Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 μm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane.

View Article and Find Full Text PDF

Maternal fructose intake during pregnancy and lactation: Later effects on renal function.

Physiol Rep

September 2022

Laboratory of Renal Physiology, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil.

Excessive fructose consumption has been associated with hypertension and metabolic disorders and can alter physiological adaptations during pregnancy, with long-term detrimental consequences. This study evaluated in post-weaning mothers the effects of increased fructose consumption during pregnancy and lactation on blood pressure and renal function. Female Wistar rats were assigned to one of four experimental groups: non-pregnant control (NPC); pregnant control (PC); non-pregnant fructose (NPF), and pregnant fructose (PF).

View Article and Find Full Text PDF

Vascular calcification, characterized by the accumulation of calcium-phosphate crystals in blood vessels, is a major cause of cardiovascular complications and chronic kidney disease (CKD)-related death. This work focuses on the molecules involved in high-phosphorus-mediated vascular calcification in CKD. A rat model of CKD was established by 5/6 nephrectomy, and the rats were given normal phosphorus diet (NPD) or high phosphorus diet (HPD).

View Article and Find Full Text PDF

Cyclin G2 promotes the formation of smooth muscle cells derived foam cells in atherosclerosis via PP2A/NF-κB/LOX-1 pathway.

Ann Transl Med

March 2021

The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China.

Background: To investigate the role and underlying mechanism of cyclin G2 (G2-type cyclin) in the formation of vascular smooth muscle cells (VSMCs) derived foam cells.

Methods: The levels of α-SMA (alpha-SM-actin), p-NF-κB (phosphorylation nuclear transcription factors kappa B), and LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) were measured by immunohistochemistry and western blotting. The mouse aortic root smooth muscle cell line MOVAS was transfected to over-express cyclin G2, which were then stimulated with 80 µg/mL ox-LDL (oxidized low-density lipoprotein) to induce foam cell formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!