Upon binding to its G protein-coupled transmembrane receptors, the actions of PGF2alpha on the corpus luteum are initiated by the phospholipase C/diacylglycerol-inositol 1,4,5-trisphosphate (InsP3)/Ca2+-protein kinase C (PKC) pathway. However, little is known about the downstream intracellular signaling events that can lead to transcriptional activation in response to PGF2alpha. The present study was conducted to examine the involvement of the mitogen-activated protein kinase (MAPK) signaling cascade in the corpus luteum. Three isoforms of the Raf family of oncoprotein kinases (A-Raf, B-Raf, and Raf-1 or c-Raf) were detected in bovine luteal cells. Raf-1 and B-Raf, but not A-Raf, were activated by PGF2alpha (1 microM) and the pharmacological PKC activator phorbol myristate acetate (PMA, 20 nM). Kinetic analysis revealed that PGF2alpha rapidly and transiently activated Raf-1. In vitro protein kinase assays demonstrated that activation of Raf-1 and B-Raf resulted in the phosphorylation and activation of MAPK kinase (MEK1), which subsequently phosphorylated p42mapk. As determined by hyperphosphorylation, tyrosine phosphorylation, and enzymatic activity, p42mapk and p44mapk were rapidly and transiently activated by both PGF2alpha (1 microM) and PMA (20 nM). Additionally, both PGF2alpha (1 microM) and PMA (20 nM) stimulated phosphorylation of Raf-1, MEK1, and p42mapk in 32P-labeled cells. Our data demonstrate that PGF2alpha activates the Raf/MEK1/p42/44mapk signaling cascade in bovine luteal cells and that the actions of PGF2alpha are mimicked by the PKC activator PMA. Activation of the Raf/MEK1/MAPK signaling cascade by PGF2alpha in luteal cells provides a mechanism to transduce signals initiated by PGF2alpha receptors on the cell surface into the nucleus. Activation of the Raf/MEK1/MAPK signaling cascade may be associated with transcriptional activation of luteal genes possessing activator protein-1-binding sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/endo.139.9.6197 | DOI Listing |
Mol Neurobiol
January 2025
Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
Neuroinflammation has been acknowledged as being one of the main pathologies that occur following chronic cerebral hypoperfusion (CCH). Since it significantly contributes to neuronal cell damage and thereby leads to cognitive impairment, the signals related to inflammation in hypoperfusion injury have been extensively investigated over the past few years. Toll-like receptor 4 (TLR4) is the key receptor responsible for immune and inflammatory reactions.
View Article and Find Full Text PDFPlant Sci
January 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China. Electronic address:
Abiotic stresses adversely impact plants survival and growth, which in turn affect plants especially crop yields worldwide. To cope with these stresses, plant responses depend on the activation of molecular networks cascades, including stress perception, signal transduction, and the expression of specific stress-related genes. Plant bZIP (basic leucine zipper) transcription factors are important regulators that respond to diverse abiotic stresses.
View Article and Find Full Text PDFElife
January 2025
Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud.
View Article and Find Full Text PDFCell Oncol (Dordr)
January 2025
Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
Background: Gastric cancer (GC) ranks as the fourth leading cause of cancer-related deaths worldwide, with most patients diagnosed at advanced stages due to the absence of reliable early detection biomarkers.
Methods: RNA-sequencing was conducted to identify the differentially expressed genes between GC tissues and adjacent normal tissues. CCK8, EdU, colony formation, transwell, flow cytometry and xenograft assays were adopted to explore the biological function of ZBTB10 and betulinic acid (BA) in GC progression.
Elife
January 2025
Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!