Exposing rats to chronic hypoxia increased the 4-aminopyridine (4-AP) sensitivity of pulmonary arteries. 1 mM 4-AP caused smooth muscle cell depolarization and contraction in arteries from hypoxic rats, but had little effect in age-matched controls. Chronic hypoxia downregulated delayed rectifier K+ current (IK(V)), which was nearly 50% blocked by 1 mM 4-AP, and non-inactivating K+ current (IK(N)), which was little affected by 1 mM 4-AP. The results suggest that IK(N) determines resting potential in control rats and that its downregulation following hypoxia leads to depolarization, which activates IK(V) and increases its contribution to resting potential. The hypoxia-induced increase in 4-AP sensitivity thus reflects a switch in the major K+ current determining resting potential, from IK(N) to IK(V). This has important implications for the actions and specificity of pulmonary vasodilator drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1565551PMC
http://dx.doi.org/10.1038/sj.bjp.0702006DOI Listing

Publication Analysis

Top Keywords

resting potential
16
chronic hypoxia
12
delayed rectifier
8
smooth muscle
8
4-ap sensitivity
8
4-ap
5
influence chronic
4
hypoxia
4
hypoxia contributions
4
contributions non-inactivating
4

Similar Publications

Introduction: Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis. Whether acute arm movement impacts arteriovenous fistula (AVF) blood flow is unknown.

Methods: In this cross-sectional analysis, we evaluated AVF blood flow using an ultrasound device at resting and after three muscle movements for proximal (elbow flexion, shoulder adduction and abduction) or distal AVF (fist extension and flexion, fingers squeeze), without and with a 2 kg load.

View Article and Find Full Text PDF

Objective: The vicious circle model of obesity proposes that the hippocampus plays a crucial role in food reward processing and obesity. However, few studies focused on whether and how pediatric obesity influences the potential direction of information exchange between the hippocampus and key regions, as well as whether these alterations in neural interaction could predict future BMI and eating behaviors.

Methods: In this longitudinal study, a total of 39 children with excess weight (overweight/obesity) and 51 children with normal weight, aged 8 to 12, underwent resting-state fMRI.

View Article and Find Full Text PDF
Article Synopsis
  • Measuring the heart rate of sea turtles helps us understand their physiological adaptations, particularly focusing on the non-invasive ECG methods developed for loggerhead turtles.
  • The study explored alternative electrode placements on the plastron of green sea turtles, finding successful ECG readings when the negative electrode was positioned near the neck.
  • Results showed that resting heart rates averaged about 8.6 beats per minute, aligning with previous studies, and highlight the need for careful individual selection to improve measurement reliability.
View Article and Find Full Text PDF

Background: Acupuncture has been demonstrated to have a promising effect on Alzheimer's disease (AD), but the underlying neural mechanisms remain unclear. The retrosplenial cortex (RSC) is one of the earliest brain regions affected in AD, and changes in its functional connectivity (FC) are reported to underlie disease-associated memory impairment. The aim of this study was to examine the effect of acupuncture on FC with the RSC in patients with AD.

View Article and Find Full Text PDF

Introduction: Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations. This study investigated whether 5 Hz tACS could modulate neural oscillations in the prefrontal cortex and how this modulation impacts performance in working memory (WM) tasks.

Method: In two sessions, 28 healthy participants received 5 Hz tACS or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC) while performing tasks with high and low WM loads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!