Iron is essential in the cellular metabolism of all mammalian tissues, including the brain. Intracerebral iron concentrations vary with age and in several (neurological) diseases. Although it is evident that endothelial cells lining the capillaries in the brain are of importance, factors governing the regulation of intracerebral iron concentration are unknown. To investigate the role of blood-brain barrier endothelial cells in cerebral iron regulation, primary cultures of porcine blood-brain barrier endothelial cells were grown in either iron-enriched or iron-depleted medium. Iron-enriched cells showed a reduction in surface-bound and total transferrin receptor numbers compared with iron-depleted cells. Transferrin receptor kinetics showed that the transferrin receptor internalization rate in iron-enriched cultures was higher, whereas the transferrin receptor externalization rate in iron-enriched cultures was lower than the rate in iron-depleted cultures. Moreover, blood-brain barrier endothelial cells cultured in iron-enriched medium were able to accumulate more iron intracellularly, which underlines our kinetic data on transferrin receptors. Our results agree with histopathological studies on brain tissue of patients with hemochromatosis, suggesting that at high peripheral iron concentrations, the rate of iron transport across the blood-brain barrier endothelial cells is to some extent proportional to the peripheral iron concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.1998.71031134.xDOI Listing

Publication Analysis

Top Keywords

endothelial cells
24
blood-brain barrier
20
barrier endothelial
20
transferrin receptor
16
iron
9
cells
8
cells cultured
8
intracerebral iron
8
iron concentrations
8
iron concentration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!