Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enterohemorrhagic Escherichia coli (EHEC) exhibits a pattern of localized adherence to host cells, with the formation of microcolonies, and induces a specific histopathological phenotype collectively known as the attaching and effacing lesion. The genes encoding the products responsible for this phenotype are located on a 35-kb pathogenicity island designated the locus of enterocyte effacement, which is also shared by enteropathogenic E. coli. We have identified an open reading frame (ORF) which is located upstream of the espA, espB, and espD genes on the complementary strand and which exhibits high homology to the genes spiB from Salmonella, yscD from Yersinia, and pscD from Pseudomonas. Localization studies showed that the encoded product is present in the cytoplasmic and inner membrane fractions of EHEC. The construction and characterization of a recombinant clone containing an in-frame deletion of this ORF demonstrated that the encoded product is a putative member of a type III system required for protein secretion. Disruption of this ORF, designated pas (protein associated with secretion), abolished the secretion of Esp proteins. The mutant adhered only poorly and lost its capacities to trigger attaching and effacing activity and to invade HeLa cells. These results demonstrate that Pas is a virulence-associated factor that plays an essential role in EHEC pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC107443 | PMC |
http://dx.doi.org/10.1128/JB.180.17.4370-4379.1998 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!