A heteroduplex analysis of four related transposable phages--B3, PM57, PM62, and Hw12--of the Pseudomonas aeruginosa B3 group was performed. Heteroduplex structures, restriction maps, and data on DNA-DNA hybridization obtained upon hybridization of phage DNA restriction fragments with labeled probes representing different regions of the phage genomes are in good agreement. The data obtained strongly confirmed the recombinational origin of the analyzed phages. Thus, all natural transposable phages of P. aeruginosa, including phages from both group B3 and species D3112, were shown to have a recombinational origin.
Download full-text PDF |
Source |
---|
Insects
November 2024
College of Life Science, Hebei University, Baoding 071002, China.
: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in , focusing on the influence of transposons across different omics levels.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Zygotic genome activation (ZGA) is critical for early embryo development and is meticulously regulated by epigenetic modifications. H3K4me3 is a transcription-permissive histone mark preferentially found at promoters, but its distribution across genome features remains incompletely understood. In this study, we investigated the genome-wide enrichment of H3K4me3 during early embryo development and embryonic stem cells (ESCs) in both sheep and mice.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia.
Human endogenous retroviruses (HERVs) are genomic fragments integrated into human DNA from germline infections by exogenous retroviruses that threatened primates early in their evolution and are inherited vertically in the germline. So far, HERVs have been studied in the context of extensive immunopathogenic, neuropathogenic and even oncogenic effects within their host. In particular, in our paper, we elaborate on the aspects related to the possible correlation of transposable HERV elements' activation and SARS-CoV-2 spike protein's presence in cells of COVID-19 patients or upon COVID-19 vaccination with implications for natural and adaptive immunity.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.
View Article and Find Full Text PDFZhonghua Yan Ke Za Zhi
January 2025
Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin300020, China.
To explore the efficacy of the modified lateral rectus muscle splitting and nasal transposition surgery in treating large-angle exotropia caused by oculomotor nerve palsy and its impact on ocular motility. Retrospective case series study. Data was collected from patients diagnosed with large-angle exotropia due to oculomotor nerve palsy and treated by modified lateral rectus muscle splitting and nasal transposition surgery at the Tianjin Eye Hospital from January 2020 to October 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!