Ecdysteroids regulate insect metamorphosis through the edysone receptor complex, a heterodimeric nuclear receptor consisting of the ecdysone receptor (EcR) and its partner ultraspiracle (USP). Differentiation in the Drosophila ovary at metamorphosis correlates with colocalization of USP and the EcR-A isoform in all but one of eight mesoderm-derived somatic cell types. The one exception is the larval terminal filament (TF) cells, in which only USP is detectable during cell differentiation. In cells destined to form the basal stalks and anterior oviduct, USP colocalizes with what appears to be the EcR-B2 isoform. Flies heterozygous for a deletion of the EcR gene exhibit several defects in ovarian morphogenesis, including a heterochronic delay in the onset of terminal filament differentiation. Flies heterozygous for a strong usp allele exhibit accelerated TF differentiation. Flies simultaneously heterozygous for both EcR and usp have additional phenotypes, including several heterochronic shifts, delayed initiation and completion of terminal filament morphogenesis and delayed ovarian differentiation during the first day of metamorphosis. Terminal filament morphogenesis is severely disrupted in homozygous usp clones. Our results demonstrate that proper expression of the ecdysone receptor complex is required to maintain the normal progression and timing of the events of ovarian differentiation in Drosophila. These findings are discussed in the context of a developmental and evolutionary role for the ecdysone receptor complex in regulating the timing of ovarian differentiation in dipteran insects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004270050186DOI Listing

Publication Analysis

Top Keywords

ecdysone receptor
16
terminal filament
16
receptor complex
12
ovarian differentiation
12
ovarian morphogenesis
8
differentiation drosophila
8
flies heterozygous
8
including heterochronic
8
differentiation flies
8
filament morphogenesis
8

Similar Publications

Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.

View Article and Find Full Text PDF

Implications of cyantraniliprole sublethal doses on the population dynamics and gene expression of Aphis gossypii Glover (Hemiptera: Aphididae).

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:

Cyantraniliprole (CYA), widely recognized as a highly effective solution, is widely used in pest management. It has been broadly utilized to manage diverse pests, among which Aphis gossypii Glover (Hemiptera: Aphididae) is a prominent agricultural pest that leads to significant crop damage worldwide. Studies suggest that the sublethal effect of insecticides might contribute to the resurgence of A.

View Article and Find Full Text PDF

20-hydroxyecdysone (20E) signaling plays an important role in regulating insect growth, development, and reproduction. However, the effect of 20E on reproductive diapause and its regulatory mechanisms have not been fully understood. is a new pest in the Inner Mongolia grasslands, and it aestivates in an obligatory reproductive diapause form.

View Article and Find Full Text PDF

Developmental neuronal remodeling is extensive and mechanistically diverse across the nervous system. We sought to identify Drosophila pupal neurons that underwent mechanistically new types of neuronal remodeling and describe remodeling Beat-VaM and Beat-VaL neurons. We show that Beat-VaM neurons produce highly branched neurites in the CNS during larval stages that undergo extensive local pruning.

View Article and Find Full Text PDF

Effects of Different Levels of Antarctic Krill Oil on the Ovarian Development of .

Animals (Basel)

November 2024

Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China.

Antarctic krill oil has been proven to be able to promote the ovarian development of crustaceans, but its optimal application dose and potential regulatory mechanism in are still unclear. In this study, five isonitrogenous and isolipidic diets with gradient additions of Antarctic krill oil (0%, 1.5%, 3%, 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!