Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.).

Biochem J

Institute of Arable Crops Research-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, UK.

Published: September 1998

Oil bodies were isolated from mature seeds of sunflower (Helianthus annuus L.) and safflower (Carthamus tinctorius L.). Oil body preparations containing only oleosin proteins could be obtained from safflower seeds by salt-washing followed by centrifugation on discontinuous sucrose density gradients. However, it was necessary to treat sunflower oil bodies with urea to obtain preparations of similar purity. Incubation of the oil bodies with proteinases gave two fragments with molecular masses of 6 and 8 kDa which were protected from digestion. These fragments represented the hydrophobic domain of the oleosins, as determined by N-terminal sequencing. Intact and proteinase-treated oil bodies of both species were analysed by Fourier-transform infrared spectroscopy, as dry films and in aqueous medium, the spectra being compared with those obtained for pure oil samples in order to identify the bands resulting from the oleosin proteins and protected peptides. This investigation showed that the hydrophobic domain of the oleosins in intact oil bodies is predominantly alpha-helical in structure and that the conformation was not greatly affected by washing the oil bodies with urea during preparation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1219711PMC
http://dx.doi.org/10.1042/bj3340469DOI Listing

Publication Analysis

Top Keywords

oil bodies
28
oil
9
bodies isolated
8
safflower carthamus
8
carthamus tinctorius
8
sunflower helianthus
8
helianthus annuus
8
oleosin proteins
8
bodies urea
8
hydrophobic domain
8

Similar Publications

Impact of under-assisted ventilation on diaphragm function and structure in a porcine model.

Anesthesiology

January 2025

Department of Anesthesiology and Critical Care Medicine B (DAR B), Saint-Eloi Hospital, University Teaching Hospital of Montpellier, 80 avenue Augustin Fliche, 34295 Montpellier, France.

Background: Long-term controlled mechanical ventilation (CMV) in intensive care unit (ICU) induces ventilatory-induced-diaphragm-dysfunction (VIDD). The transition from CMV to assisted mechanical ventilation is a challenge that requires clinicians to balance over-assistance and under-assistance. While the effects of over-assistance on the diaphragm are well known, we aimed to assess the impact of under-assistance on diaphragm function and structure in piglet model with pre-existing VIDD (after long-term CMV) or without VIDD (short-term CMV).

View Article and Find Full Text PDF

Metabolism-lipid droplet-nucleic acid crosstalk to regulate lipid storage and other cellular processes in oleaginous Rhodococcus bacteria.

Biol Cell

January 2025

INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina.

Actinobacteria belonging to Mycobacterium and Rhodococcus genera are able to synthesize and intracellularly accumulate variable amounts of triacylglycerols (TAG) in the form of lipid droplets (LDs). The lipid storage capacity of LDs in cells is controlled by the balance between lipogenesis and lipolysis. The growth of LDs in bacterial cells may be directly promoted by TAG biosynthesis, whereas TAG degradation might result in the reduction of LD sizes and lipid storage capacity.

View Article and Find Full Text PDF

α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology.

View Article and Find Full Text PDF

Bisphenol S Induces Lipid Metabolism Disorders in HepG2 and SK-Hep-1 Cells via Oxidative Stress.

Toxics

January 2025

Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.

Bisphenol S (BPS) is a typical endocrine disruptor associated with obesity. To observe BPS effects on lipid metabolism in HepG2 and SK-Hep-1 human HCC cells, a CCK-8 assay was used to assess cell proliferation in response to BPS, and the optimal concentration of BPS was selected. Biochemical indices such as triglyceride (TG) and total cholesterol (T-CHO), and oxidative stress indices such as malondialdehyde (MDA) and catalase (CAT) were measured.

View Article and Find Full Text PDF

The Effect of Temperature over the Growth and Biofilm Formation of the Thermotolerant .

J Fungi (Basel)

January 2025

Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico.

is a medically relevant fungus, particularly in tropical regions. Although its aflatoxin production and thermotolerance are well documented, its biofilm-forming ability has received less attention, despite being a key factor in the virulence of as an opportunistic pathogen, which can significantly impact therapeutic outcomes. To investigate the influence of temperature on the growth and biofilm formation of an isolate, we compared it on solid media with the reference strain ATCC 22546 and documented morphological changes during conidial germination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!