Calmodulin is the universal calcium modulator in eukaryotic cells. Its biological activity is closely regulated by the second messenger Ca2+. Previous studies in cell-free extracts [Laub, M. & Jennissen, H. P. (1997) Biochim. Biophys. Acta 1357, 173-191] have shown that calmodulin is reversibly ubiquitylated by ubiquityl-calmodulin synthetase (ubiquitin-calmodulin ligase, EC 6.3.2.21) in the presence of Ca2+ without being channeled to degradation by the 26S proteasome. As shown here monoubiquitylation strongly decreases the biological activity of calmodulin towards phosphorylase kinase by reducing its affinity approximately threefold and the maximal degree of activation approximately twofold. Thus, a structural clarification of the ubiquitylation site on calmodulin has become crucial for advancing our knowledge in this field on a molecular level. As demonstrated by sequence analysis and mass spectrometry of conjugates, the ubiquitylation site is located in the first Ca2+-binding loop of calmodulin and has the octapeptide structure -L-F-D-K21-D-G-D-G- with Lys21 being the ubiquitylated residue in vertebrate and other calmodulins. This catalytic recognition sequence is, however, not the only structural requirement for calmodulin ubiquitylation by ubiquityl-calmodulin synthetase. Removal of the 41 C-terminal amino acids (fourth Ca2+-binding loop) separated by several nanometers from Lys21 drastically decreases the affinity and reactivity of the synthetase for calmodulin, indicating a more extensive structural requirement for the substrate binding site i.e. binding recognition. This allows the enzyme to discriminate in a site-specific manner between two nearly identical catalytic recognition sites in vertebrate calmodulin of which the second site -V-F-D-K94-D-G-N-G- in the third Ca2+-binding loop is apparently not ubiquitylated by the synthetase.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1327.1998.2550422.xDOI Listing

Publication Analysis

Top Keywords

ubiquitylation site
12
ca2+-binding loop
12
calmodulin
9
ubiquitin-calmodulin ligase
8
vertebrate calmodulin
8
biological activity
8
ubiquityl-calmodulin synthetase
8
catalytic recognition
8
structural requirement
8
site
5

Similar Publications

Cyclin F, a non-canonical member of the cyclin protein family, plays a critical role in regulating the precise transitions of cell-cycle events. Unlike canonical cyclins, which bind and activate cyclin-dependent kinases (CDKs), Cyclin F functions as a substrate receptor protein within the Skp1-Cullin-F box (SCF) E3 ubiquitin ligase complex, enabling the ubiquitylation of target proteins. The structural features that distinguish Cyclin F as a ligase adaptor and the mechanisms underlying its selective substrate recruitment over Cyclin A, which functions in complex with CDK2 at a similar time in the cell cycle, remain largely unexplored.

View Article and Find Full Text PDF

Recombinant Antibodies Inhibit Enzymatic Activity of the E3 Ubiquitin Ligase CHIP via Multiple Mechanisms.

J Biol Chem

January 2025

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.

View Article and Find Full Text PDF

Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.

View Article and Find Full Text PDF

Insulin/IGF signaling (IIS) regulates developmental and metabolic plasticity. Conditional regulation of insulin-like peptide expression and secretion promotes different phenotypes in different environments. However, IIS can also be regulated by other, less-understood mechanisms.

View Article and Find Full Text PDF

Phosphorylation of substrates by cyclin-dependent kinases (CDKs) is the driving force of cell cycle progression. Several CDK-activating cyclins are involved, yet how they contribute to substrate specificity is still poorly understood. Here, we discover that a positively charged pocket in cyclin B1, which is exclusively conserved within B-type cyclins and binds phosphorylated serine- or threonine-residues, is essential for correct execution of mitosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!