Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The role of inhibitory and facilitatory processes in the induction of seizures was studied in a kainic acid (KA) model of epilepsy. The dentate gyrus (DG) response to paired-pulse stimulation of the perforant path (PP) was monitored prior to and immediately following the initial KA induced afterdischarge (AD) in rats chronically prepared with stimulation recording electrodes. The subjects received a 1-h program of stimulation consisting of repeated sequences of pulse pairs at a short (20-30 ms), intermediate (45-90 ms), and long (200-300 ms) interpulse interval (IPIs). The stimulation program was administered both under control conditions and immediately following systemic injection of KA. During the control condition, stable suppression of population spike measures was obtained at the short (early phase) and long (late phase) IPIs, while facilitation was observed at the intermediate IPI. Administration of KA resulted in a progressive loss of suppression prior to the initial AD at the short IPI; neither facilitation nor the late phase of suppression were significantly affected. The early phase decreased further following the initial discharge. Since the early phase most likely reflects recurrent inhibition, these results provide evidence that inhibitory loss precedes the occurrence of KA induced AD, and that this inhibitory loss is increased further following the initial evoked AD. A use-dependent disinhibition is one possible explanation for the change in responsiveness that precedes the AD. This disinhibition could result from a depressed response at GABA-A receptors, an increased responsiveness at GABA-B receptors or possibly both.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0920-1211(98)00028-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!