Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We measured beta-endorphin concentrations in the anterior and neurointermediate lobes of the pituitary gland and in microdissected brain regions of moderate-seizure genetically epilepsy-prone rats (GEPR-3), severe-seizure GEPR-9s and Sprague-Dawley non-epileptic control rats. Plasma concentrations of beta-endorphin and beta-melanocyte-stimulating hormone (alpha-MSH) were also measured as indicators of pituitary POMC-peptide secretion. Concentrations of beta-endorphin in the anterior lobe of GEPR-3s were 53% higher compared to controls and 57% higher compared to GEPR-9s. There were no differences in neurointermediate lobe beta-endorphin concentrations between control and either GEPR strain. Plasma beta-endorphin concentrations were significantly lower in GEPR-9s than controls. Plasma levels of alpha-MSH did not differ between control and GEPRs. In the hypothalamus of GEPR-9s beta-endorphin concentrations in the arcuate nucleus were significantly greater than in GEPR-3s. Concentrations of beta-endorphin in the central amygdala of GEPR-9s were two- to threefold greater than in control or GEPR-3s. Beta-Endorphin concentrations in the central gray of GEPR-3s were 58% lower than control or GEPR-9s. These data suggest that anterior lobe beta-endorphin secretion is reduced in GEPR-9s. Furthermore, brain endorphinergic pathways appear to be differentially altered in GEPR-3s and GEPR-9s. Alterations in pituitary beta-endorphin secretion and brain endorphinergic systems may contribute to seizure susceptibility in GEPRs and to differences in seizure severity between GEPR-3s and GEPR-9s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0920-1211(98)00019-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!