The T-structure of human haemoglobin is linked by salt-bridges between its four subunits, formed by the C-terminal arginine residues of the alpha-subunits and the C-terminal histidine residues of the beta-subunits. In the R-structure, these salt-bridges are absent. The oxygen affinity of the T-structure is lower than that of the R-structure by the equivalent of 3.5 kcal/mol haem. This difference has been attributed to the constraints imposed upon the T-structure by the salt-bridges, which were thought to hinder the changes in tertiary structure needed for firm oxygen binding. We have subjected this postulate to a rigorous test by measuring the oxygen equilibria of T-state crystals of an abnormal human haemoglobin in which the C-terminal histidine residues of the beta-chains are replaced by leucine residues. This replacement removes the salt-bridges from the histidine imidazole groups to the neighbouring aspartate residues. The crystals have an oxygen affinity about three times greater than that of crystals of normal haemoglobin. Hill's coefficient is close to unity. The oxygen affinity is unaffected by pH, chloride or the allosteric effector bezafibrate. Equilibrium curves determined by single crystal microspectrophometry using light polarised parallel and normal to the crystallographic a-axis show no significant difference between the oxygen affinities of alpha and beta-haems. Our results show that rupture of salt-bridges raises the oxygen affinity of the T-structure even when this is clamped firmly by the crystal lattice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.1998.1983 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!