This study examined the effects of daily oral magnesium (Mg) supplementation on bone turnover in 12 young (27-36 yr old) healthy men. Twelve healthy men of matching age, height, and weight were recruited as the control group. The study group received orally 15 mmol Mg (Magnosolv powder, Asta Medica) daily in the early afternoon with 2-h fasting before and after Mg intake. Fasting blood and second void urine samples were collected in the early morning on days 0, 1, 5, 10, 20, and 30, respectively. Total and ionized Mg2+ and calcium (Ca2+), and intact PTH (iPTH) levels were determined in blood samples. Serum biochemical markers of bone formation (i.e. C-terminus of type I procollagen peptide and osteocalcin) and resorption (i.e. type I collagen telopeptide) and urinary Mg level adjusted for creatinine were measured. In these young males, 30 consecutive days of oral Mg supplementation had no significant effect on total circulating Mg level, but caused a significant reduction in the serum ionized Mg+ level after 5 days of intake. The Mg supplementation also significantly reduced the serum iPTH level, which did not appear to be related to changes in serum Ca2+ because the Mg intake had no significant effect on serum levels of either total or ionized Ca2+. There was a strong positive correlation between serum iPTH and ionized Mg2+ (r = 0.699; P < 0.001), supporting the contention that decreased serum iPTH may be associated with the reduction in serum ionized Mg2+. Mg supplementation also reduced levels of both serum bone formation and resorption biochemical markers after 1-5 days, consistent with the premise that Mg supplementation may have a suppressive effect on bone turnover rate. Covariance analyses revealed that serum bone formation markers correlated negatively with ionized Mg2+ (r = -0.274 for type I procollagen peptide and -0.315 for osteocalcin), but not with iPTH or ionized Ca2+. Thus, the suppressive effect on bone formation may be mediated by the reduction in serum ionized Mg2+ level (and not iPTH or ionized Ca2+). In summary, this study has demonstrated for the first time that oral Mg supplementation in normal young adults caused reductions in serum levels of iPTH, ionized Mg2+, and biochemical markers of bone turnover. In conclusion, oral Mg supplementation may suppress bone turnover in young adults. Because increased bone turnover has been implicated as a significant etiological factor for bone loss, these findings raise the interesting possibility that oral Mg supplementation may have beneficial effects in reducing bone loss associated with high bone turnover, such as age-related osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jcem.83.8.5015 | DOI Listing |
Arthritis Res Ther
January 2025
Department of Rheumatology, the Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, People's Republic of China.
Background: Currently, the pathophysiology of new bone formation in radiographic axial spondyloarthritis (r-axSpA) remains unclear. Cellular elements and their secreted bone turnover markers might be one of the underlying mechanisms that drive the new bone formation. Our study aimed to investigate the role of bone turnover markers in r-axSpA patients with fatty lesions.
View Article and Find Full Text PDFForensic Sci Int
January 2025
Forensic Medicine, Forensic Science and Sports Medicine Section, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, Perugia, Italy. Electronic address:
Radiocarbon analysis in bones, particularly through Bomb Pulse dating, is an essential tool in forensic investigations for estimating the postmortem interval of human remains. However, there are some limitations related to the interpretation of laboratory data, since this can differ from the Post Mortem Interval by many years, depending on the anatomical district and the bone part sampled, as well as the age of the individual and other parameters, since these elements influence bone turnover. In recent years, many studies have been conducted, but with non-standardized data and on limited samples.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).
View Article and Find Full Text PDFClin Implant Dent Relat Res
February 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Objectives: To compare the clinical effectiveness of a novel bioceramic (BC) with a control xenograft (BO) for guided bone regeneration (GBR) performed simultaneously with implant placement.
Materials And Methods: This clinical study enrolled patients with insufficient bone volume who required GBR during implant placement to increase bone width using either BC or BO. Outcome measures included a dimensional reduction in buccal bone thickness measured by cone beam computed tomography performed immediately post-surgery and at 6 months postoperatively (ΔHBBT), soft tissue healing at 14 days, 1 month, and 6 months postoperatively, and complications rates.
Adv Healthc Mater
January 2025
Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325000, P. R. China.
Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!