We have analyzed the mechanism of human endothelial injury in a human peripheral blood lymphocyte-severe combined immunodeficient (huPBL-SCID) mouse/human skin graft model of allograft injury and examined the effect of immunosuppressive drugs on this process. In this model, split-thickness human skin containing the superficial dermal microvessels was grafted onto immunodeficient C.B-17 SCID or SCID/beige mice and allowed to heal. Human peripheral blood mononuclear cells (PBMCs) allogeneic to the skin, when subsequently introduced by intraperitoneal injection, caused destruction of the human dermal microvasculature by day 16, evident as endothelial cell sloughing and thrombosis. In the same specimens, mouse microvessels that invaded the human skin graft were uninjured. Human microvascular cell injury was accompanied by a mononuclear cell infiltrate consisting of approximately equal numbers of human CD4+ and CD8+ T cells, some of which contained perforin-positive granules. We found no evidence of human natural killer cells and noted occasional human, but not mouse, macrophages at a frequency indistinguishable from that resident in skin on animals not receiving human PBMCs. These human T cell infiltrates did not extend into adjacent mouse skin. Human immunoglobulin G antibody was detected in the blood and was diffusely present throughout mouse and human tissues in SCID mice receiving PBMCs. Mouse C3 was detected on human dermal vessels in both unreconstituted control animals and those that received PBMCs. Blood and tissues from mice injected with PBMCs depleted of B cells showed no human immunoglobulin, but circulating CD3+ cells were detected by flow cytometry at levels comparable with those of animals receiving whole PBMCs. Significantly, skin graft infiltration by human T cells and human dermal microvascular injury were equivalent in the B cell-depleted and whole-PBMC-reconstituted mice. Mice inoculated with PBMCs depleted of CD8+ T cells developed microvascular injury and infiltrates containing perforin-expressing CD4+ T cells. These data suggested a cytolytic T cell-dependent mechanism of microvessel injury. We then tested the ability of T cell immunosuppressants, cyclosporine and rapamycin, to attenuate vessel damage. Neither cyclosporine nor rapamycin alone effectively reduced either mononuclear cell infiltration or vascular injury. However, a combination of the two agents reduced both parameters. We conclude that the huPBL-SCID/skin allograft model may be used both to study cytolytic T cell-mediated rejection and to test the effect of immunosuppressive drug strategies in vivo in a small-animal model of human immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852982PMC
http://dx.doi.org/10.1016/S0002-9440(10)65604-0DOI Listing

Publication Analysis

Top Keywords

human
20
microvascular injury
12
human peripheral
12
peripheral blood
12
cyclosporine rapamycin
12
skin graft
12
human dermal
12
dermal microvascular
8
injury
8
injury human
8

Similar Publications

Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.

View Article and Find Full Text PDF

The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.

View Article and Find Full Text PDF

IFN-γ licenses normal and pathogenic ALPK1/TIFA pathway in human monocytes.

iScience

January 2025

CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France.

Alpha-kinase 1 (ALPK1) is an immune receptor sensing the bacterial nucleotide sugar ADP-heptose. ALPK1 phosphorylates TIFA leading to its oligomerization and downstream NF-κB activation. Specific mutations in are associated with an autoinflammatory syndrome termed ROSAH and with spiradenoma (skin cancers with sweat gland differentiation).

View Article and Find Full Text PDF

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

Forest edges, where humans, mosquitoes, and wildlife interact, may serve as a nexus for zoonotic arbovirus exchange. Although often treated as uniform interfaces, the landscape context of edge habitats can greatly impact ecological interactions. Here, we investigated how the landscape context of forest edges shapes mosquito community structure in an Amazon rainforest reserve near the city of Manaus, Brazil, using hand-nets to sample mosquitoes at three distinct forest edge types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!