The effect of the noncompetitive N-methyl-d-aspartate (NMDA)-receptor antagonist MK-801 on seizures induced by hyperbaric oxygen in relation to changes in cerebral blood flow (CBF) was investigated. Rats were injected with MK-801 (0.005-8 mg/kg) 30 min before exposure to 100% O2 at 5 atm (gauge pressure). MK-801 administration resulted in a biphasic response in seizure latency. Doses of 0.1-4 mg/kg significantly decreased time to EEG and motor seizures, while 8 mg/kg had no effect on seizure latency. MK-801 had no effect on seizure duration. In a dose range 0.1-8 mg/kg MK-801 increased CBF in awake animals, which might be responsible for the decreased seizure latency. The gradual increase in seizure latency with increasing MK-801 doses suggests involvement of an additional factor probably related to the drug's anticonvulsive effect. Unlike MK-801, a competitive NMDA receptor antagonist, AP-7, at a dose 250 mg/kg had no effect on latency to seizures or CBF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/taap.1998.8447 | DOI Listing |
J Neurosurg Case Lessons
January 2025
Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, Florida.
Background: Radiation-induced sarcoma (RIS) is an exceptionally rare occurrence following radiation therapy, and manifestation usually occurs after a several-year latency period. Herein, the authors report the development of a radiation-induced osteosarcoma of the frontoparietal calvaria following treatment for an oligodendroglioma in an 84-year-old woman.
Observations: The patient had been diagnosed with a grade III anaplastic oligodendroglioma when she was 78 years old.
Pharmacol Rep
January 2025
Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.
View Article and Find Full Text PDFJ Neurosurg
January 2025
1Department of Neurosurgery and.
Objective: Awake craniotomy is commonly used to resect lesions located near the language area during brain surgery. However, it is often difficult to perform language tasks due to several limitations such as difficulty in awakening during surgery and intraoperative seizures. This study investigated the clinical significance of bidirectional corticocortical evoked potential (CCEP) monitoring as a new approach to evaluate intraoperative language function.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
Background: For patients with epilepsy, antiseizure medication remains the primary treatment; however, it is ineffective in approximately 30% of cases. These patients experience progressive neuronal damage and poor outcomes. Therefore, there is an urgent need for disease-modifying therapy (DMT) that targets the pathogenesis of epilepsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!