Localization of the follicle-stimulating hormone (FSH) molecule and its receptor (FSHR), as well as the role of FSH in Sertoli cell mitosis and maturation, has been demonstrated by several investigators in human and murine testis by detecting the localization of anti-FSH antibodies or [(131)I]-labeled FSH and by detecting FSH receptor (FSHR) mRNA by in situ hybridization, or FSHR by anti-FSHR antibodies. The presence of FSH in germinal cells is controversial or, in humans, excluded. We have investigated the distribution of the human FSH molecule and its receptor in human and mouse testicular cells under different experimental conditions, at the submicroscopical level, by using a better antigenicity conservative procedure. Thus, the distribution of FSH and of the messenger RNA for its receptor in Sertoli cells has now been clarified. In germinal cells, our observations demonstrate the presence of FSH and the FSHR mRNA: the first on the plasma membrane and in endocytotic vesicles, and the second scattered in the cytoplasm. The cells presenting the higher amount of positivity ranged from spermatogonia to spermatocytes, including round spermatids. Penetration was by the endocytosis via membrane vesicles in which the FSHR is present, whereas its messenger is largely present in the cytoplasm and is responsible for the binding and subsequent internalization of the FSH molecule. As a control, human FSH was administered in vitro to the Y1 mouse cell line, which was stably transfected with cDNA for FSHR and devoid of endogenous FSH. The FSH molecule has been localized by monoclonal antibodies on plasma membranes and vesicles, and the FSHR mRNA was found scattered in the cytoplasm after in situ hybridization. We can now conclude that FSH is present in Sertoli cells and in round germinal cells, both expressing the FSHR. FSH penetrates in a similar way in both kinds of cells via endocytosis, and is therefore subsequently localized in the same membranous organelles.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fasebj.12.11.1045DOI Listing

Publication Analysis

Top Keywords

fsh molecule
16
fsh
14
fshr mrna
12
germinal cells
12
follicle-stimulating hormone
8
molecule receptor
8
fshr
8
receptor fshr
8
fsh sertoli
8
situ hybridization
8

Similar Publications

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Radiotherapy is a critical treatment for cancer but poses significant risks to ovarian tissue, particularly in young females, leading to premature ovarian failure (POF). This study examines the therapeutic potential of etoricoxib nanostructured lipid carriers (ETO-NLC) in mitigating radiation-induced ovarian damage in female rats. Twenty-four female rats were randomly assigned to four groups: a control group receiving normal saline, a group exposed to a single dose of whole-body gamma radiation (6 Gy), a group treated with etoricoxib (10 mg/kg) post-radiation, and a group treated with ETO-NLC for 14 days following radiation.

View Article and Find Full Text PDF

Objective: Successful embryo implantation is contingent upon the intricate interaction between the endometrium and the blastocyst. Recurrent implantation failure (RIF) signifies the clinical challenge of failing pregnancy post-transfer of high-quality embryos, fresh or frozen, in at least three in vitro fertilization (IVF) cycles, often in women under 40 years. Recent studies identify impaired blastocyst maternal tissue communication among recurrent implantation failure causes.

View Article and Find Full Text PDF

In Brief: PI3K-AKT signaling activates steroidogenesis by inducing estradiol and progesterone production, while MEK-ERK1/2 signaling regulates steroidogenesis by inhibiting estradiol and inducing progesterone production in granulosa cells (GCs). Both pathways are essential for glycolytic and mitochondrial metabolism in these cells.

Abstract: The PI3K-AKT and MEK-ERK1/2 signaling pathways are integral to fundamental cellular processes, such as proliferation, viability and differentiation.

View Article and Find Full Text PDF

Phosphate metabolism: its impact on disorders of mineral metabolism.

Endocrine

November 2024

Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, SP, Brazil.

Regulatory molecules typically work cooperatively to ensure the efficient functioning of hormonal systems. Examples include LH and FSH in reproductive biology, insulin and glucagon in glucose metabolism. Similarly, calcium and phosphorus are important regulators of skeletal homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!