Molinate causes an impairment in reproductive capability in the male rat. Administration of molinate to rats (40 mg/kg/day for 7 days) caused a distinctive sperm lesion. At higher doses of molinate (140 mg/kg for 7 days) this lesion was accompanied by morphological changes to the testis that were consistent with a delayed release of the late spermatids to the seminiferous tubular lumen, a process controlled by the release of testosterone. In accordance with this, molinate (>/=40 mg/kg) caused a marked decrease in the concentration of circulating and testicular testosterone. The Leydig cells of the testis appear to be the primary target site in that radiolabel from [3H]molinate specifically localized within this cell type. In addition, esterase activity in the Leydig cells was inhibited following molinate administration. In vitro, molinate is a poor inhibitor of esterase activity, whereas molinate sulfoxide, a major metabolite of molinate in rats, and molinate sulfone were shown to be potent inhibitors of this process, suggesting that metabolic activation of molinate is required in vivo. Molinate sulfoxide (>/=10 mg/kg) caused an identical sperm lesion to that of molinate and markedly decreased plasma and testicular testosterone concentration. These effects were not seen with the molinate metabolites 4-hydroxymolinate (10 mg/kg), molinate sulfone (10 mg/kg), and hexamethyleneimine (10 mg/kg). Since the sperm lesion is a secondary event caused by a disruption of spermatogenesis, this would imply that the testis lesion and the reproductive impairment are also a consequence of molinate sulfur oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/taap.1998.8371 | DOI Listing |
J Environ Sci (China)
June 2025
Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China. Electronic address:
Se Pu
April 2024
3. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China.
Pesticide residues may be present in olive oil because pesticides are applied to olive trees during their cultivation and growth for pest prevention and some of these pesticides are not easily degraded. Studies on pesticide residues in olive oil have mainly focused on the detection of single types of pesticide residues, and reports on the simultaneous detection of multiple pesticide residues are limited. At present, hundreds of pesticides with different polarities and chemical properties are used in practice.
View Article and Find Full Text PDFRSC Adv
November 2023
BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n Leioa 48940 Spain
Expression of concern for 'Cobalt metal-organic framework-based ZIF-67 for the trace determination of herbicide molinate by ion mobility spectrometry: investigation of different morphologies' by Mehdi Davoodi , , 2021, , 2643-2655, DOI: https://doi.org/10.1039/D0RA09298C.
View Article and Find Full Text PDFAquat Toxicol
July 2023
Postgraduate Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil.
Pesticide contamination in water resources is a global threat. Although usually found at low concentrations, pesticides raise considerable toxicological concerns, mainly when mixtures are considered. The occurrence of 22 pesticides (2,4 D, alachlor, aldicarb, aldrin, atrazine, carbendazim, carbofuran, chlordane, chlorpyrifos, DDT, diuron, glyphosate, lindane, mancozeb, methamidophos, metolachlor, molinate, profenofos, simazine, tebuconazole, terbufos, and trifluralin) was investigated, through consolidated database information, in surface freshwaters of Brazil.
View Article and Find Full Text PDFSci Total Environ
August 2023
Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea. Electronic address:
Molinate is classified as a thiocarbamate herbicide and is mainly used in paddy fields to culture rice. However, the toxic effects of molinate and the associated mechanisms in the process of development have not been completely elucidated. Therefore, in the present study, we demonstrated that molinate reduced the viability of zebrafish larvae and the probability of successful hatching using zebrafish (Danio rerio), one of the remarkable in vivo models for testing the toxicity of chemicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!