The model carcinogen 4-nitroquinoline 1-oxide (4-NQO) has historically been characterized as "UV-mimetic" with respect to its genotoxic properties. However, recent evidence indicates that 4-NQO, unlike 254-nm UV light, may exert significant cytotoxic and/or mutagenic potential via the generation of reactive oxygen species. To elucidate the response of eukaryotic cells to 4-NQO-induced oxidative stress, we isolated Saccharomyces cerevisiae mutants exhibiting hypersensitivity to the cytotoxic effects of this mutagen. One such mutant, EBY1, was cross-sensitive to the oxidative agents UVA and diamide while retaining parental sensitivities to 254-nm UV light, methyl methanesulfonate, and ionizing radiation. A complementing gene (designated yPTPA1), restoring full UVA and 4-NQO resistance to EBY1 and encoding a protein that shares 40% identity with the human phosphotyrosyl phosphatase activator hPTPA, has been isolated. Targeted deletion of yPTPA1 in wild type yeast engendered the identical pattern of mutagen hypersensitivity as that manifested by EBY1, in addition to a spontaneous mutator phenotype that was markedly enhanced upon exposure to either UVA or 4-NQO but not to 254-nm UV or methyl methanesulfonate. Moreover, the yptpa1 deletion mutant exhibited a marked deficiency in the recovery of high molecular weight DNA following 4-NQO exposure, revealing a defect at the level of DNA repair. These data (i) strongly support a role for active oxygen intermediates in determining the genotoxic outcome of 4-NQO exposure and (ii) suggest a novel mechanism in yeast involving yPtpa1p-mediated activation of a phosphatase that participates in the repair of oxidative DNA damage, implying that hPTPA may exert a similar function in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.273.34.21489 | DOI Listing |
DNA Repair (Amst)
October 2024
Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States. Electronic address:
Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2β, TOP3α, TOP3β and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China. Electronic address:
Targeting SHP2 has become a potential cancer treatment strategy. In this study, ellagic acid was first reported as a competitive inhibitor of SHP2, with an IC value of 0.69 ± 0.
View Article and Find Full Text PDFOncogene
January 2024
Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA.
PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastatic development: Pten/Rb mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas Rb mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node dissemination, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110β and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor.
View Article and Find Full Text PDFEur J Med Chem
February 2023
Department of Biochemistry and Molecular Medicine, USA; WVU Cancer Institute, USA. Electronic address:
The Src homology containing phosphotyrosyl phosphatase 2 (SHP2) is a bona fide oncogene particularly in cancers driven by overexpression of receptor tyrosine kinases (RTKs). As such, there is a growing interest to target SHP2 in cancer. Based on these premises, several active site (type I) and allosteric site (type II) inhibitors have been developed, but no SHP2 targeting therapies have reached the clinic yet.
View Article and Find Full Text PDFMol Cancer Res
November 2021
Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia.
Previous studies have reported dysregulated cytoplasmic and nuclear expression of the β-catenin protein in triple-negative breast cancer (TNBC) in the absence of signaling pathway dysregulation. However, the mechanism that sustains β-catenin protein dysregulation independent of signaling is not understood. In this study, we show that Src homology phosphotyrosyl phosphatase 2 (SHP2) is essential for β-catenin protein stability and for sustaining the cytoplasmic and nuclear pools in TNBC cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!