Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The metabolism and metabolic effects of alpha-D-glucose pentaacetate were investigated in isolated rat pancreatic islets. Several findings were compatible with the view that the insulinotropic action of alpha-D-glucose pentaacetate is causally related to its capacity to act as a fuel in the islet B-cell. First, the ester was efficiently taken up and hydrolyzed with resulting accumulation of D-glucose in the islet cells. Second, the conversion of alpha-D-[5-3H]glucose pentaacetate to 3HOH and that of alpha-D-[U-14C]glucose pentaacetate to 14CO2 exceeded those found at an equimolar concentration (1.7 mM) of D-glucose and were both inhibited by 2-deoxy-D-glucose (16.7 mM). Last, the ester inhibited the catabolism of both exogenous D-glucose or endogenous fatty acids. Yet, an apparent dissociation between the metabolic and secretory responses to the ester was suggested by the failure of alpha-D-glucose pentaacetate to increase O2 uptake by the islets. Moreover, there were striking differences between the catabolism of the ester and that of unesterified D-glucose, such as a much higher intracellular D-glucose content and an insensitiveness to the inhibitory action of D-mannoheptulose in islets exposed to alpha-D-glucose pentaacetate. Likewise, the ratio between hexose oxidation and utilization was lower for alpha-D-glucose pentaacetate than for unesterified D-glucose in islets concomitantly exposed to the hexose and its ester. It is proposed, therefore, that the insulinotropic action of alpha-D-glucose pentaacetate, although probably linked to the intracellular generation of D-glucose from the ester, may not involve the same coupling process between metabolic and functional events as that currently implied in the process of glucose-stimulated insulin release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/mgme.1998.2701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!