Bcl-2-family proteins: the role of the BH3 domain in apoptosis.

Trends Cell Biol

Gwen Knapp Center for Lupus and Immunology Research, Howard Hughes Medical Institute, University of Chicago, IL 60637, USA.

Published: August 1998

Bcl-2-related proteins have come to occupy a prominent position in the realm of programmed cell death. Members of this fast-growing family are highly related in one or more specific regions, commonly referred to as Bcl-2 homology (BH) domains. BH domains contribute at multiple levels to the function of these proteins in cell death and survival. Particularly intriguing is the emergence of the BH3 domain as a potent 'death domain' and of a growing subclass of pro-apoptotic proteins with no similarity to Bcl-2 beyond their BH3 homology. Here, the authors classify proteins of the Bcl-2 family on the basis of function and domain organization, discuss the importance of the BH3 domain in protein-protein interactions and in cell death and provide possible explanations for the perceived redundancy in the expression of this subclass of death promoters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0962-8924(98)01321-xDOI Listing

Publication Analysis

Top Keywords

bh3 domain
12
cell death
12
bcl-2-family proteins
4
proteins role
4
bh3
4
role bh3
4
domain
4
domain apoptosis
4
apoptosis bcl-2-related
4
proteins
4

Similar Publications

Tipping the balance of cell death: alternative splicing as a source of MCL-1S in cancer.

Cell Death Dis

December 2024

Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.

Apoptosis-regulating proteins from the B-cell lymphoma-2 (BCL-2) family are of continued interest as they represent promising targets for anti-cancer therapies. Myeloid cell leukemia-1 (MCL-1), which usually refers to the long isoform (MCL-1L) is frequently overexpressed in various types of cancer. However, MCL1 pre-mRNA can also undergo alternative splicing through exon skipping to yield the short isoform, MCL-1S.

View Article and Find Full Text PDF

Charge-guided masking of a membrane-destabilizing peptide enables efficient endosomal escape for targeted intracellular delivery of proteins.

Acta Pharm Sin B

October 2024

School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.

Intracellular delivery of biologicals such as peptides, proteins, and nucleic acids presents a great opportunity for innovative therapeutics. However, the endosome entrapment remains a major bottleneck in the intracellular delivery of biomacromolecules, largely limiting their therapeutic potential. Here, we converted a cell-penetrating peptide (CPP), low molecular weight protamine (LMWP), to endosomal escape peptides (EEPs) by masking LMWP with a pH-responsive counter-ionic peptide.

View Article and Find Full Text PDF

B-cell lymphoma 2 protein (Bcl-2) is an important regulator of cell apoptosis. Inhibitors that mirror the structural domain 3 (BH3) of Bcl-2 can activate apoptosis in cancer cells, making them a promising target for anticancer treatment. Hence, the present study aimed to investigate potential BH3-mimetic peptides from two vicilin-derived legume proteins from soybean and cowpea bean.

View Article and Find Full Text PDF

Caspase-2 kills cells with extra centrosomes.

Sci Adv

November 2024

Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.

Centrosomes are membrane-less organelles that orchestrate a wide array of biological functions by acting as microtubule organizing centers. Here, we report that caspase-2-driven apoptosis is elicited in blood cells failing cytokinesis and that extra centrosomes are necessary to trigger this cell death. Activation of caspase-2 depends on the PIDDosome multi-protein complex, and priming of PIDD1 at extra centrosomes is necessary for pathway activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!