The influence of the ionic strength and temperature of medium on the changes in the geometry of the double stranded DNA of different nucleotide content upon the formation of complexes with antitumor drugs mitoxantrone and ametantrone was investigated. It is shown that from circular dichroism spectra it is possible to determine the relative intensity of changes in the geometry of DNA double helix upon binding with the drugs investigated. The binding of one ametantrone molecule causes greater changes in the geometry of DNA double helix than the binding of mitoxantrone.

Download full-text PDF

Source

Publication Analysis

Top Keywords

changes geometry
12
drugs mitoxantrone
8
mitoxantrone ametantrone
8
circular dichroism
8
geometry dna
8
dna double
8
double helix
8
helix binding
8
[the study
4
study interaction
4

Similar Publications

Background: Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators.

View Article and Find Full Text PDF

The detection of low-molecular-weight biomarkers is essential for diagnosing and managing various diseases, including neurodegenerative conditions such as Alzheimer's disease. A biomarker's low molecular weight is a challenge for label-free optical modalities, as the phase change they detect is directly proportional to the mass bound on the sensor's surface. To address this challenge, we used a resonant Young's slit interferometer geometry and implemented several innovations, such as phase noise matching and optimisation of the fringe spacing, to maximise the signal-to-noise ratio.

View Article and Find Full Text PDF

Superhydrophobic coatings are beneficial for applications like self-cleaning, anti-corrosion, and drag reduction. In this study, we investigated the impact of surface geometry on the static, dynamic, and sliding contact angles in the Cassie-Baxter state. We used fluoro-silane-treated silicon micro-post patterns fabricated via lithography as model surfaces.

View Article and Find Full Text PDF

Entropies in Electric Circuits.

Entropy (Basel)

January 2025

Electronics Engineering Department (DEEL), Energy, Power and Integrated Circuits (EPIC), Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Av. d'Eduard Maristany, 16 Edifici A Campus Besòs, 08029 Barcelona, Spain.

The present study examines the relationship between thermal and configurational entropy in two resistors in parallel and in series. The objective is to introduce entropy in electric circuit analysis by considering the impact of system geometry on energy conversion in the circuit. Thermal entropy is derived from thermodynamics, whereas configurational entropy is derived from network modelling.

View Article and Find Full Text PDF

Background: In developing countries, rheumatic mitral valve stenosis (MS) is still a problem and its progression leads to left atrial (LA) damage. Due to the complexity of the LA geometry, currently used techniques like antero-posterior dimension (LAD) and 2D echo derived LA volume (LAV) have several limitations that are corrected by 3D derived LA volumes in addition to functional evaluation.

Purpose: To assess the LA functions using 2D speckle tracking echocardiography and 3D transthoracic echocardiography in patients with clinically significant MS in comparison to normal healthy subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!