Fur (ferric uptake regulator) proteins control iron uptake in many Gram-negative bacteria. Although Fur homologues have been identified in Gram-positive bacteria, their roles in gene regulation are unknown. Genome sequencing has revealed three fur homologues in Bacillus subtilis: yqkL, yqfV and ygaG. We demonstrate that yqkL encodes an iron uptake repressor: both siderophore biosynthesis and transcription of ferri-siderophore uptake genes is constitutive in the yqkL mutant. Thus, yqkL encodes a repressor that is functionally as well as structurally related to Fur. B. subtilis peroxide stress genes are induced by either H2O2 or by metal ion limitation. Previous genetic studies defined a regulatory locus, perR, postulated to encode the peroxide regulon repressor. We demonstrate that a ygaG mutant has the perR phenotype: It is highly resistant to peroxides and overexpresses catalase, alkyl hydroperoxide reductase and the DNA binding protein MrgA. Nine spontaneous perR mutations, isolated by virtue of their ability to derepress mrgA transcription in the presence of managanous ion, all contain sequence changes in the ygaG locus and can be complemented by the cloned ygaG gene. Thus, ygaG encodes the peroxide regulon repressor and is allelic with perR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2958.1998.00921.x | DOI Listing |
J Am Chem Soc
January 2025
Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany.
Acenes are an important class of polycyclic aromatic hydrocarbons that have gained considerable attention from chemists, physicists, and material scientists, due to their exceptional potential for organic electronics. They serve as an ideal platform for studying the physical and chemical properties of sp carbon frameworks in the one-dimensional limit and also provide a fertile playground to explore magnetism in graphenic nanostructures due to their zigzag edge topology. While higher acenes up to tridecacene have been successfully generated by means of on-surface synthesis, it is imperative to extend their synthesis toward even longer homologues to comprehensively understand the evolution of their electronic ground state.
View Article and Find Full Text PDFACS Catal
November 2024
Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
Halohydrin dehalogenase HheG and its homologues are remarkable enzymes for the efficient ring opening of sterically demanding internal epoxides using a variety of nucleophiles. The enantioselectivity of the respective wild-type enzymes, however, is usually insufficient for application and frequently requires improvement by protein engineering. We herein demonstrate that the highly flexible N-terminal loop of HheG, comprising residues 39 to 47, has a tremendous impact on the activity as well as enantioselectivity of this enzyme in the ring opening of structurally diverse epoxide substrates.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany.
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts.
View Article and Find Full Text PDFFront Chem
September 2024
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Int J Cancer
January 2025
Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!