Thanks to genetics, to the study of protein-protein interactions and to direct viewing of subcellular structures by the use of immunofluorescence and green fluorescent protein (GFP) fusions, the organization of the constriction apparatus of walled bacteria is gradually coming to light. The tubulin-like protein FtsZ assembles as a ring around the site of constriction and operates as an organizer and activator of septum-shaping proteins. Much less is known about the factors specifying the location of FtsZ rings. Circumstantial evidence favours the presence at future ring positions of fixed elements, the potential division sites (PDS), before FtsZ assembles. FtsZ polymerization is initiated from a point on a PDS, the nucleation site, still to be identified, and proceeds bidirectionally around the cell. We hypothesize that new PDS are specified in a manner that depends on the functioning of an active chromosome partition apparatus. This view is supported by the fact that formation of mid-cell PDS requires initiation of DNA replication, and by recent studies supporting the existence of a specialized partition apparatus in a variety of microorganisms. Although PDS may be specified directly by the partition apparatus, indirect localization linked to compartmentalized gene expression during chromosome segregation is also possible. Once created, PDS are used in a regulated manner, and several mechanisms normally operate to direct constriction to selected PDS at the correct time. One, dedicated to the permanent suppression of polar PDS, rests on the minicell suppression system and involves a protein that is able to discriminate between polar and non-polar sites. Another is involved in asymmetric site selection at the early stages of sporulation in Bacillus subtilis. Finally, a mechanism observed only in certain multi-nucleated cells appears to favour division at non-polar PDS related to the most ancient replication/DNA segregation events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2958.1998.00874.x | DOI Listing |
Nat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China. Electronic address:
Countercurrent chromatography (CCC) is an efficient technique for purifying bioactive natural compounds, but selecting the solvent system can be a time-consuming and crucial process for successful separation. This paper discussed the HPLC-assisted mathematical prediction method for the n-hexane/alcohol solvents/water (HAWat) and ethyl acetate/n-butanol/water (EBuWat) systems and designed an intelligent online selection system to simplify the separation process. First, the applicable rage of HAWat and EBuWat solvent systems were quantified by the methanol concentration at the column inlet when template molecules peak in a HPLC analysis (B%).
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
Quantitative polymerase chain reaction (qPCR) and digital PCR (dPCR) are applied for quantifying molecular targets in disease diagnostics, pathogen detection, and ecological monitoring. Uptake of dPCR is increasing due to its higher quantification accuracy relative to qPCR, which stems from its independence from standard curves and its increased resistance to PCR inhibitors. Throughput can be increased through multiplexing, which allows simultaneous quantification of multiple targets.
View Article and Find Full Text PDFThylakoid membranes in chloroplasts and cyanobacteria harbor the multisubunit protein complexes that catalyze the light reactions of photosynthesis. In plant chloroplasts, the thylakoid membrane system comprises a highly organized network with several subcompartments that differ in composition and morphology: grana stacks, unstacked stromal lamellae, and grana margins at the interface between stacked and unstacked regions. The localization of components of the photosynthetic apparatus among these subcompartments has been well characterized.
View Article and Find Full Text PDFHuman activity recognition (HAR) using smartphone inertial sensors, like accelerometers and gyroscopes, enhances smartphones' adaptability and user experience. Data distribution from these sensors is affected by several factors including sensor hardware, software, device placement, user demographics, terrain, and more. Most datasets focus on providing variability in user and (sometimes) device placement, limiting domain adaptation and generalization studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!