The working hypothesis of the studies described herein was that inhibition of proteasome-mediated IkappaB degradation would inhibit TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation, interleukin-8 (IL-8) gene transcription, and IL-8 protein release in A549 cells. Mutational analysis of the 5' flanking region of the IL-8 gene confirmed that an intact NF-kappaB site is necessary for TNF-alpha-induced IL-8 gene transcription. The addition of TNF-alpha to A549 cells resulted in rapid loss of IkappaB from the cytoplasm of cells, associated with a corresponding increase in NF-kappaB-binding activity in nuclear extracts from the cells. However, pretreatment of the cells with the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132, 10 microM) reversed the effects of TNF-alpha on IL-8 release from A549 cells (as determined with an enzyme-linked immunosorbent assay [ELISA]) and on IL-8 gene transcription (as determined with reporter-gene assays). MG-132 reversed the effects of TNF-alpha on IkappaB degradation as determined by Western blot analysis. IkappaB phosphorylation and ubiquination were not altered by MG-132, which implies that the effects of MG-132 were secondary to proteasome inhibition. MG-132 also reversed the increase in NF-kappaB binding in nuclear extracts from TNF-alpha-treated cells. These studies show that inhibition of proteasome-mediated IkappaB degradation results in inhibition of TNF-alpha induced IL-8 production in A549 cells by limiting NF-kappaB-mediated gene transcription.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/ajrcmb.19.2.3149 | DOI Listing |
Chem Biodivers
January 2025
Bezmialem Vakif University: Bezmialem Vakif Universitesi, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vatan St., 34093, Istanbul, TURKEY.
In this study, a series of 16 arylidenehydrazide derivatives (7a-7p), hybridized with the natural product carvacrol, were successfully synthesized starting from anthranilic acid methyl ester. The cytotoxic effects of these compounds were examined against two different cell lines, A549 and BEAS-2B. Additionally, in silico studies were conducted to investigate the ligand-protein binding modes and their stabilities.
View Article and Find Full Text PDFSynth Syst Biotechnol
June 2025
Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
Genome mining has revealed that spp. possess numerous down-regulated or cryptic biosynthetic gene clusters (BGCs). This finding hinted that our investigation of fungal secondary metabolomes is limited.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Cell Biology Laboratory, Federal University of Alagoas, Maceió, Brazil.
The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells change into mesenchymal cells with fibroblast-like characteristics. EMT plays a crucial role in the progression of fibrosis. Classical inducers associated with the maintenance of EMT, such as TGF-β1, have become targets of several anti-EMT therapeutic strategies.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
A microwave-assisted method was utilized to synthesize novel pyranoquinolone derivatives as dual acting topoisomerase II/DNA gyrase inhibitors with apoptosis induction ability for halting lung cancer and staphylococcal infection. Herein, the designed rationale was directed toward mimicking the structural features of both topoisomerase II and DNA gyrase inhibitors as well as endowing them with apoptosis induction potential. The absolute configuration of the series was assigned using X-ray diffraction analysis.
View Article and Find Full Text PDFNanoscale
January 2025
Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.
CRISPR-Cas9 has emerged as a highly effective and customizable genome editing tool, holding significant promise for the treatment of KRAS mutations in lung cancer. In this study, we introduce a novel micelleplex, named C14-PEI, designed to co-deliver Cas9 mRNA and sgRNA efficiently to excise the mutated KRAS allele in lung cancer cells. C14-PEI is synthesised from 1,2-epoxytetradecane and branched PEI 600 Da a ring-opening reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!