Outer dense fibers (ODF) are specialized cytoskeletal elements of the mammalian sperm tail which are composed of several prominent proteins. We previously reported the isolation of a cDNA (111-450) encoding a putative 84-kDa ODF protein. Here we demonstrate by independent cDNA isolations and by translational/immunoprecipitation of testicular mRNAs using anti-ODF 84 antibodies that 111-450 cDNA encodes the 84-kDa protein. We then analyzed the testicular expression of the ODF 84 mRNA and protein. Riboprobes generated from the clones recognized four testicular-specific transcripts of 1.6, 2.2, 2.4, and 2.8 kb in both rat and bull of which the immunoprecipitable product of the 2.4-kb mRNA comigrates with ODF 84 protein. Developmental Northerns indicated that the 2.2- and 2.4-kb mRNAs are first transcribed during meiotic prophase while the other two species are first expressed in round spermatids. The levels of all the transcripts steadily increased up to elongated spermatids. Immunocytochemistry revealed that the anti-84 reactive ODF proteins were synthesized and assembled in the cytoplasm of elongated spermatids (steps 9-18) with peak activity occurring in step 16 of spermiogenesis. Immunogold labeling was selective to the assembling ODF and connecting piece of the tail and to granulated bodies of the cytoplasmic lobe. Both the striated collar and capitulum of the connecting piece were immunolabeled as well as the basal plate of the implantation fossa. A combination of pre- and postembedding immunogold labeling provided evidence that the 84-kDa ODF protein is localized to both the cortex and medulla of the ODF in contrast to the sole medullary localization of the major 27-kDa ODF protein. Thus the 84-kDa ODF protein, encoded by the 2.4 transcript, is translationally regulated, packaged after synthesis into granulated bodies, assembled in a proximal to distal direction along the axoneme and may interact by means of leucine zippers specifically with the 27-kDa ODF protein during assembly. Its localization to both the cortex and medulla of the ODF, as opposed to exclusive medullary localization of the 27-kDa ODF protein, and the presence of two leucine zippers, only one of which interacts with the 27-kDa ODF, suggests that it could act as a link between proteins of the two regions of the ODF.

Download full-text PDF

Source
http://dx.doi.org/10.1006/dbio.1998.8931DOI Listing

Publication Analysis

Top Keywords

odf protein
28
odf
16
84-kda odf
16
27-kda odf
16
cortex medulla
12
connecting piece
12
protein
10
localization cortex
8
outer dense
8
dense fibers
8

Similar Publications

The alleviation by wheat and oat dietary fiber alone or combined of T2DM symptoms in / mice.

Food Funct

January 2025

Academy of National Food and Strategic Reserves Administration, Beijing, China.

The effects of wheat and oat dietary fiber (DF) alone or combined on T2DM remain unclear. In this research, / diabetic mice were fed with diets containing 10% insoluble wheat dietary fiber (WDF), 10% insoluble oat dietary fiber (ODF), and 10% WODF (mixture of WDF and ODF, WDF : ODF = 1 : 1) for 8 weeks. The results showed that WDF, ODF, and WODF all reduced the body weight and fasting blood glucose (FBG) and improved oral glucose tolerance in / mice.

View Article and Find Full Text PDF

Biopolymer-based oral films integrated with probiotic active compounds for improved health applications.

Arch Microbiol

November 2024

Vocational School of Health Services, Department of Medical Services and Techniques, Bilecik Şeyh Edebali University, Bilecik, 11100, Turkey.

Orally dissolving films (ODFs) have emerged as a versatile platform that combines convenience, efficacy, and patient compliance. In this study, the cell-free supernatant of the oral probiotic Streptococcus salivarius M18 was incorporated into various biopolymer-based ODF formulations, evaluated for demolding, fragility, and flexibility. The combination of carboxymethyl cellulose, sodium alginate, and glycerol successfully formed stable films.

View Article and Find Full Text PDF

Dose sparing enabled by immunization with influenza vaccine using orally dissolving film.

Int J Pharm

December 2024

Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea. Electronic address:

Influenza vaccine delivered by orally dissolving film vaccine (ODFV) is a promising approach. In this study, we generated three ODFVs each comprising pulluan and trehalose with different doses of inactivated A/Puerto Rico/8/34, H1N1 virus (ODFV I, II, III) to evaluate their dose-sparing effect in mice. The ODFVs were placed on the tongues of mice to elicit immunization and after 3 immunizations at 4-week intervals, mice were challenged with a lethal dose of A/PR/8/34 to assess vaccine-induced protection.

View Article and Find Full Text PDF

Proteogenomics for Non-model Ocean-Derived Fungi.

Methods Mol Biol

October 2024

Manipal Academy of Higher Education (MAHE), Manipal & Institute of Bioinformatics, Bangalore, India.

Article Synopsis
  • Most biological experiments primarily focus on common model organisms (MOs) like humans and mice, while non-model organisms (NMOs) have not been as thoroughly studied, especially those found in ocean environments.
  • Ocean-derived fungi (ODFs) are a unique group of NMOs that play essential roles in marine ecosystems as decomposers and have adapted to thrive in challenging ocean conditions.
  • ODFs present significant opportunities for research and development in pharmaceutical and industrial applications, highlighting the need for more exploration and understanding of these under-studied organisms.
View Article and Find Full Text PDF

Oral disintegrating films (ODFs) offer a patient-friendly approach with enhanced convenience and rapid onset of action over various health benefits. ODFs are fabricated for geriatric, pediatric, and individuals facing swallowing challenges. The present work aims to fabricate and characterize ODFs mainly composed of okra mucilage (OM), hyaluronic acid (HA), vitamin-C-loaded bioactive glass nanoparticles (VBG NPs), and clove essential oil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!