Genetically modified lymphocytes have been successfully used for correction of ADA deficiency in children and in controlling graft-versus-host disease (GvHD) after allogeneic bone marrow transplantation. Low transduction efficiencies are, however, limiting for gene therapeutic strategies based on lymphocytes. In this study we compared protocols for highly efficient gene transfer into human T cells using retroviral vector-containing supernatant. We showed that infection of both human primary T cells and CD4+ Jurkat cells is most efficient on the matrix component fibronectin. Transduction was carried out with a retroviral vector encoding both the human intracytoplasmatically truncated low-affinity nerve growth factor receptor (deltaLNGFR) as a gene transfer marker and the Herpes simplex virus thymidine kinase for negative selection. Based on LNGFR expression genetically modified cells were enriched to near purity by magnetic cell sorting (MACS). Enriched cells could be shown to be highly sensitive to ganciclovir.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2141.1998.00785.x | DOI Listing |
Small Methods
January 2025
Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
Redox provides unique opportunities for interconverting molecular/biological information into electronic signals. Here, the fabrication of a 3D-printed multiwell device that can be interfaced into existing laboratory instruments (e.g.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Bioconvergence, CHA University, 6F, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
While mitochondria are known to be essential for intracellular energy production and overall function, emerging evidence highlights their role in influencing cell behavior through mitochondrial transfer. This phenomenon provides a potential basis for the development of treatment strategies for tissue damage and degeneration. This study aims to evaluate whether mitochondria isolated from osteoblasts can promote osteogenic differentiation in mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFFEBS J
January 2025
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland.
Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales.
View Article and Find Full Text PDFJACS Au
January 2025
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
The rapid emergence of antimicrobial-resistant pathogenic microbes has accelerated the search for novel therapeutic agents. Here we report the discovery of antarmycin A (), an antibiotic containing a symmetric 16-membered macrodiolide core with two pendant vancosamine moieties, one of which is glucosylated, from deep-sea-derived SCSIO 07407. The biosynthetic gene cluster of was identified on a giant plasmid featuring transferable elements.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
Polyketide synthases (PKSs) are multidomain enzymatic assembly lines that biosynthesize a wide selection of bioactive natural products from simple building blocks. In contrast to their -acyltransferase (AT) counterparts, -AT PKSs rely on stand-alone ATs to load extender units onto acyl carrier protein (ACP) domains embedded in the core PKS machinery. -AT PKS gene clusters also encode stand-alone acyl hydrolases (AHs), which are predicted to share the overall fold of ATs but function like type II thioesterases (TEs), hydrolyzing aberrant acyl chains from ACP domains to promote biosynthetic efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!