5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential.

J Pharmacol Exp Ther

Preclinical CNS Research Department, Pharma Division, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Published: August 1998

In vitro, (S)-2-(chloro-5-fluoro-indol-1-yl)-1-methylethylamine 1:1 C4H4O4 and (S)-2-(4,4,7-trimethyl-1,4-dihydro-indeno[1, 2-b]pyrrol-1-yl)-1-methylethylamine 1:1 C4H4O4 exhibited high-affinity binding to the serotonin2C (5HT2C) receptors and stimulated turnover of inositol 1,4,5-triphosphate. Affinity to several of the other 5-HT receptor subtypes and to numerous nonserotonergic receptors was much lower. In rats, both compounds elicited behavioral signs of 5-HT2C receptor agonism but not 5-HT2A receptor agonism. Hypomotility induced in rats by high doses of these compounds was reversed by the 5-HT2C receptor antagonist N-(2-naphthyl)-N'-(3-pyridyl)-urea 1:1 HCI. In addition, these compounds were active in tests used to demonstrate anticompulsive effects: reducing schedule-induced polydipsia in rats (prevented by the 5-HT2C/2B receptor antagonist N-(1-methyl-5'-indolyl)-(3-pyridyl)urea 1:1 HCl, reversing increased scratching induced with 8-hydroxy-dipropylaminotetralin 1:1 HCl in squirrel monkeys (no tolerance developed), decreasing responding in the marble-burying task in mice, and decreasing excessive eating of palatable food in rats. In contrast to these compounds, fluoxetine was much less potent, and in some tasks less efficacious, in reducing excessive behavior in these models. These two 5-HT2C receptor agonists do not show anxiogenic effects in the plus-maze in rats. (S)-2-(4,4,7-trimethyl-1,4-dihydro-indeno[1, 2-b]pyrrol-1-yl)-1-methylethylamine 1:1 C4H4O4 reduced the olfactory bulbectomy-induced passive avoidance impairment in rats, a result that indicates antidepressant potential. Similarly, in the differential-reinforcement-of-low rate 72-s operant schedule task in rats, (S)-2-(chloro-5-fluoro-indol-1-yl)-1-methylethylamine 1:1 C4H4O4 increased (and (S)-2-(4,4,7-trimethyl-1,4-dihydro-indeno[1, 2-b]pyrrol-1-yl)-1-methylethylamine 1:1 C4H4O4 showed a tendency to increase) total reinforcements received, which is suggestive of antidepressant activity. The electroencephalography defined sleep-waking pattern in rats produced by these two 5-HT2C agonists, as well as fluoxetine, included increased quiet-waking and decreased rapid-eye-movement sleep, which is characteristic of antidepressant drugs. These results suggest that 5-HT2C receptor agonism is associated with therapeutic potential in obsessive compulsive disorder and depression.

Download full-text PDF

Source

Publication Analysis

Top Keywords

5-ht2c receptor
20
s-2-447-trimethyl-14-dihydro-indeno[1 2-b]pyrrol-1-yl-1-methylethylamine
12
2-b]pyrrol-1-yl-1-methylethylamine c4h4o4
12
receptor agonism
12
receptor agonists
8
therapeutic potential
8
s-2-chloro-5-fluoro-indol-1-yl-1-methylethylamine c4h4o4
8
rats
8
receptor antagonist
8
receptor
7

Similar Publications

Sarcopenia, the pathological age-related loss of muscle mass and strength, contributes to physical decline, frailty, and diminished healthspan. The impact of sarcopenia is expected to rise as the aging population grows, and treatments remain limited. Therefore, novel approaches for enhancing physical function and strength in older adults are desperately needed.

View Article and Find Full Text PDF

GW117 induces anxiolytic effects by improving hippocampal functions.

Pharmacol Biochem Behav

November 2024

Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

GW117 functions as both an MT1/MT2 receptor agonist and a 5-HT2C receptor antagonist. This study aimed to investigate the anxiolytic effects of GW117 through behavioral assessments, including the open field test and novelty-suppressed feeding test (NSFT) within a chronic unpredictable mild stress (CUMS) model. GW117 was administered via oral gavage for 21 days to evaluate its sustained anxiolytic effects, with behavioral tests including the NSFT, the Vogel-conflict test, and the O-maze test.

View Article and Find Full Text PDF

Background: BMAL1, a key regulator of circadian rhythms, plays a multifaceted role in brain function. However, the complex interplay between BMAL1, memory, neuroinflammation, and neurotransmitter regulation remains poorly understood. To investigate these interactions, we conducted a study using BMAL1-haplodeficient mice (BMAL1).

View Article and Find Full Text PDF

Objectives: Clozapine is an atypical antipsychotic crucial for treatment-resistant schizophrenia, characterised by its multi-receptor targeting, including serotonin (5-HT2A, 5-HT2C) and dopamine (D1, D2, D3, D4) receptors, among others. This broad mechanism is effective against positive symptoms of schizophrenia with a lower incidence of extrapyramidal side effects. However, clozapine poses significant haematological risks, notably agranulocytosis, necessitating stringent blood monitoring protocols.

View Article and Find Full Text PDF

Rationale: Mescaline is a classical psychedelic compound with a phenylethylamine structure that primarily acts on serotonin 5-HT2A/C receptors, but also binds to 5-HT1A and 5-HT2B receptors. Despite being the first psychedelic ever isolated and synthesized, the precise role of different serotonin receptor subtypes in its behavioral pharmacology is not fully understood.

Objectives: In this study, we aimed to investigate how selective antagonists of 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT1A receptors affect the behavioral changes induced by subcutaneous administration of mescaline (at doses of 10, 20, and 100 mg/kg) in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!