Motor effects of bilateral lesions of the globus pallidus induced by quinolinic acid (30 and 60 nmol in 0.5 microl) were investigated in rats. Globus pallidus lesions with 60 nmol quinolinic acid produced a significant reduction of spontaneous motor activity measured by a reduced locomotor activity in an open field and by a reduced sniffing activity in an experimental chamber. In addition, D-amphetamine (1 mg/kg, i.p.)-induced hyperlocomotion and D-amphetamine (3 mg/kg, i.p.)-induced stereotyped sniffing were significantly reduced in animals with quinolinic acid lesions (60 nmol). Globus pallidus lesions with 60 nmol quinolinic acid potently reversed catalepsy induced by systemic administration of the dopamine D1 receptor antagonist SCH23390 (0.75 and 1 mg/kg, i.p.) or the dopamine D2 receptor antagonist raclopride (1.25 and 5 mg/kg, i.p.), while lesions with 30 nmol quinolinic acid exerted anti-cataleptic effects which were only partly significant. In line with current models of basal ganglia functions, these findings indicate that inactivation of the globus pallidus reduced spontaneous motor activity and motor hyperactivity after dopamine receptor stimulation. However, the present data also demonstrate that inactivation of the globus pallidus reversed motor hypoactivity induced by a blockade of dopamine D1 and D2 receptors. Therefore, a more complex functional model of the globus pallidus is required to account for the opposite effects on motor behaviour observed after lesions of this basal ganglia nucleus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(98)00009-8 | DOI Listing |
J Neurosurg
January 2025
1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing.
Objective: The aim of this study was to evaluate outcomes of deep brain stimulation (DBS) for Meige syndrome, compare the efficacy of globus pallidus internus (GPi) and subthalamic nucleus (STN) as targets, and identify potential outcome predictors.
Methods: The PubMed, Embase, and Web of Science databases were systematically searched to collect individual data from patients with Meige syndrome receiving DBS. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) scores.
PLoS Biol
January 2025
Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.
The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands.
View Article and Find Full Text PDFFront Neurosci
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Introduction: Dysarthria is a motor speech disorder frequently associated with subcortical damage. However, the precise roles of the subcortical nuclei, particularly the basal ganglia and thalamus, in the speech production process remain poorly understood.
Methods: The present study aimed to better understand their roles by mapping neuroimaging, behavioral, and speech data obtained from subacute stroke patients with subcortical lesions.
Acta Neurol Belg
January 2025
Departamento de Radiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil.
J Neurosci
January 2025
Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr. Houghton, MI 49931.
Deep brain stimulation (DBS) effectively treats motor symptoms of advanced Parkinson's disease (PD), with the globus pallidus interna (GPi) commonly targeted. However, its therapeutic mechanisms remain unclear. We employed optogenetic stimulation in the entopeduncular nucleus (EP), the rat homologue of GPi, in a unilateral 6-OHDA lesioned female Sprague Dawley rat model of PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!