Several proteins that may regulate c-myc mRNA post-transcriptionally were previously isolated and characterized. Two of them, HuR and AUF1, bind specifically to the 3' untranslated region (UTR) of c-myc mRNA. Because c-myc is regulated post-transcriptionally in various mouse tissues, including quiescent tissues, fetal liver and regenerating liver, we investigated whether HuR and AUF1 expression was also regulated in these tissues. Concerning AUF1, we analysed the expression of various mRNA and protein isoforms. We discovered a new AUF1 mRNA variant with a long AU-rich 3' UTR. We show that AUF1 expression, regardless of the RNA isoform considered, and HuR mRNA expression parallel c-myc expression in quiescent tissues and during liver development; their expression is high in lymphoid tissues and fetal liver and low in adult liver. However, no upregulation of HuR or AUF1 accompanies the upregulation of c-myc mRNA following partial hepatectomy. We discuss our results in relation to the current hypothesis that HuR and AUF1 act as mRNA destabilizing factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1201895 | DOI Listing |
Cell Mol Life Sci
January 2025
The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
Disuse bone loss is prone to occur in individuals who lack mechanical stimulation due to prolonged spaceflight or extended bed rest, rendering them susceptible to fractures and placing an enormous burden on social care; nevertheless, the underlying molecular mechanisms of bone loss caused by mechanical unloading have not been fully elucidated. Numerous studies have focused on the epigenetic regulation of disuse bone loss; yet limited research has been conducted on the impact of RNA modification bone formation in response to mechanical unloading conditions. In this study, we discovered that mA reader IGF2BP1 was downregulated in both osteoblasts treated with 2D clinostat and bone tissue in HLU mice.
View Article and Find Full Text PDFTransl Lung Cancer Res
December 2024
Department of Anatomy, Chonnam National University Medical School, Hwasun, Republic of Korea.
Background: Previous studies reported significant relationships between obesity and pulmonary dysfunction. Here, we investigated genetic alterations in the lung tissues of high fat diet (HFD) induced obese mouse through transcriptomic and molecular analyses.
Methods: Eight-week-old male C57BL/6J mice were fed either a normal chow diet (NCD) or HFD for 12 weeks.
Front Immunol
January 2025
Department of Colorectal Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Colorectal cancer (CRC) ranks among the top three cancers globally in both incidence and mortality, posing a significant public health challenge. Most CRC cases are diagnosed at intermediate to advanced stages, and reliable biomarkers for early detection are lacking. Long non-coding RNAs (lncRNAs) have been implicated in various cancers, including CRC, playing key roles in tumor development, progression, and prognosis.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
January 2025
School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India. Electronic address:
Pseudoexfoliation (PEX) is an age-related, complex systemic disorder of protein aggregopathy. It is characterized by the extracellular fibril depositions, termed PEX fibrils, initially observed in various organ tissues during pseudoexfoliation syndrome (PEXS) and with significant prominence in the eye during advanced pseudoexfoliation glaucoma (PEXG). The study explores the association between CACNA1 A (calcium channel, voltage-dependent, P/Q type, alpha 1 A subunit) variants and PEX in an Indian population.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Integrated Chinese Medicine and Western Medicine, Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei 230012, China.
This study aims to investigate the effect of Linggui Zhugan Decoction(LGZGD) on autophagy in the mouse model of chronic heart failure(CHF) induced by myocardial infarction(MI), as well as the regulatory effect of LGZGD on the hypoxia-inducible factor-1α(HIF-1α)/heme oxygenase-1(HO-1) signaling pathway, based on bioinformatics and animal experiments. The active ingredients and corresponding targets of LGZGD were retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database, and GEO, GeneCards, and DisGeNET were searched for the disease targets. Cytoscape was used to establish a "drug-component-target" network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!