Background: Angiotensin II is a potent stimulator of the proximal tubule apical membrane Na/H antiporter, encoded by NHE3. The nonreceptor tyrosine kinase, c-Src, plays a key role in regulation of NHE3 by acidosis in the proximal tubule, and in signaling effects of angiotensin II in vascular smooth muscle.

Methods: The present studies examined the role of c-Src in mediating angiotensin II-induced NHE3 activation in cultured OKP cells. c-Src was inhibited with herbimycin A, a tyrosine kinase inhibitor, and expression of a dominant negative c-Src, c-SrcK295M.

Results: Herbimycin A blocked angiotensin II induced increases in Na/H antiporter activity. In two clonal cell lines expressing vector alone, angiotensin II increased Na/H antiporter activity, while in three clones expressing c-SrcK295M, angiotensin II had no effect. Cyclic AMP and protein kinase A have been proposed to be key mediators in regulation of NHE3 by angiotensin II. 10(-4) M 8-bromo cAMP induced a 40 to 50% inhibition of Na/H antiporter activity in cells expressing c-SrcK295M, similar to that seen in wild-type OKP cells. In addition, cells expressing c-SrcK295M responded normally to 10(-7) M dexamethasone with a 50 to 80% increase in Na/H antiporter activity.

Conclusions: These studies demonstrate that c-Src is required for angiotensin II-induced increases in NHE3 activity. Thus, c-Src plays a key role in antiporter activation by acidosis and angiotensin II.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1523-1755.1998.00029.xDOI Listing

Publication Analysis

Top Keywords

na/h antiporter
20
okp cells
12
antiporter activity
12
expressing c-srck295m
12
angiotensin
10
dominant negative
8
negative c-src
8
angiotensin induced
8
proximal tubule
8
tyrosine kinase
8

Similar Publications

Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.

View Article and Find Full Text PDF

Comprehensive Analysis of the NHX Gene Family and Its Regulation Under Salt and Drought Stress in Quinoa ( Willd.).

Genes (Basel)

January 2025

Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea.

: Abiotic stresses such as salinity and drought significantly constrain crop cultivation and affect productivity. Quinoa ( Willd.), a facultative halophyte, exhibits remarkable tolerance to drought and salinity stresses, making it a valued model for understanding stress adaptation mechanisms.

View Article and Find Full Text PDF

Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress.

View Article and Find Full Text PDF

Shaking it off: loss of NHE3-mediated calcium reabsorption is compensated by the distal nephron.

Kidney Int

February 2025

Department of Pediatrics, The Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada. Electronic address:

Sodium reabsorption is tightly coupled to calcium reabsorption in the proximal tubule via the action of the Na/H exchanger isoform 3 (NHE3). Poulsen et al. provide evidence of reduced proximal calcium reabsorption in kidney tubule-specific NHE3-deficient mice that is compensated distally, unaltered phosphate homeostasis, and NHE3 involvement in the hypocalciuric effect of thiazides.

View Article and Find Full Text PDF

Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!