cAMP-dependent protein kinase phosphorylates and activates nuclear Ca2+-ATPase.

Proc Natl Acad Sci U S A

Laboratoire de Neurobiologie Moléculaire des Interactions Cellulaires, UPR 416 du Centre National de la Recherche Scientifique, 5 rue Blaise Pascal, 67084 Strasbourg, France.

Published: August 1998

A Ca2+-pump ATPase, similar to that in the endoplasmic reticulum, has been located on the outer membrane of rat liver nuclei. The effect of cAMP-dependent protein kinase (PKA) on nuclear Ca2+-ATPase (NCA) was studied by using purified rat liver nuclei. Treatment of isolated nuclei with the catalytic unit of PKA resulted in the phosphorylation of a 105-kDa band that was recognized by antibodies specific for sarcoplasmic reticulum Ca2+-ATPase type 2b. Partial purification and immunoblotting confirmed that the 105-kDa protein band phosphorylated by PKA is NCA. The stoichiometry of phosphorylation was 0.76 mol of phosphate incorporated/mol of partially purified enzyme. Measurement of ATP-dependent 45Ca2+ uptake into purified nuclei showed that PKA phosphorylation enhanced the Ca2+-pumping activity of NCA. We show that PKA phosphorylation of Ca2+-ATPase enhances the transport of 10-kDa fluorescent-labeled dextrans across the nuclear envelope. The findings reported in this paper are consistent with the notion that the crosstalk between the cAMP/PKA- and Ca2+-dependent signaling pathways identified at the cytoplasmic level extends to the nucleus. Furthermore, these data support a function for crosstalk in the regulation of calcium-dependent transport across the nuclear envelope.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21312PMC
http://dx.doi.org/10.1073/pnas.95.16.9178DOI Listing

Publication Analysis

Top Keywords

pka phosphorylation
12
camp-dependent protein
8
protein kinase
8
nuclear ca2+-atpase
8
rat liver
8
liver nuclei
8
nuclear envelope
8
pka
5
kinase phosphorylates
4
phosphorylates activates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!