The purpose of the present study was to determine the effect of acute administration of insulin-like growth factor I (IGF-I) or insulin on in vivo protein synthesis in muscle and other organs in fasted mice and to compare this response with that produced by feeding. Recombinant IGF-I (3.3 nmol prime, 3.33 nmol/h) or insulin (0.056 nmol/h) was infused intravenously for 60 min along with glucose to prevent hypoglycemia. Fractional rates of tissue protein synthesis (FSR) were determined by injection of [2H5]phenylalanine (25 mg/100 g body wt, 40% enriched). Both IGF-I and insulin caused a 25% increase in FSR of heart (P < 0.001) and soleus muscle (P < 0. 05) and a 65% increase in gastrocnemius and plantaris muscle (both P < 0.001), thus restoring rates to those seen in fed animals. A fivefold lower dose of IGF-I also stimulated protein synthesis in gastrocnemius muscle and heart (both P < 0.05) but not in soleus muscle. No significant effects of IGF-I on FSR were detected in liver, kidney, spleen, proximal small intestine, colon, lung, or brain. The results indicate that the ability of an overnight fast to decrease protein synthesis and the acute effects of insulin and IGF-I to stimulate protein synthesis are restricted to skeletal and cardiac muscles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.1998.275.1.E118 | DOI Listing |
Plant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation.
View Article and Find Full Text PDFPlant Physiol
January 2025
Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R. China.
Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains.
View Article and Find Full Text PDFSci Adv
January 2025
Atelier de Biologie Chimie Informatique Structurale, Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial reducing cofactor for reductive biosynthesis and protection from oxidative stress. To fulfill their heightened anabolic and reductive power demands, cancer cells must boost their NADPH production. Progrowth and mitogenic protein kinases promote the activity of cytosolic NAD kinase (NADK), which produces NADP, a limiting NADPH precursor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!