To investigate effects of sustained activity on major phenotypic properties, the left extensor digitorum longus muscle of young (15 wk) and aging (101 wk) male Brown Norway rats was subjected to 50 days of chronic low-frequency stimulation (CLFS; 10 Hz, 10 h/day). The contralateral muscle served as control. Changes in metabolic enzymes were analyzed by using glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase as reference enzymes of glycolysis and by using citrate synthase and 3-hydroxyacyl-CoA dehydrogenase as mitochondrial enzymes representative of aerobic-oxidative metabolism. Myosin heavy chain (MHC) isoforms were analyzed by SDS-PAGE. No differences existed between the enzyme activity profiles of control muscles from young and aging rats. CLFS induced similar increases in mitochondrial enzymes, as well as similar decreases in glycolytic enzymes. Although the MHC composition of the control muscles in the aging rats displayed a shift toward slower isoforms, the ultimate changes induced by CLFS led to nearly identical MHC phenotypes in both young and aging rats. These results demonstrate an unaltered adaptability of skeletal muscle to increased neuromuscular activity in the aging rat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jappl.1998.85.2.437 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!