There is a difference between the sheep and rat somatotrophs in the response to growth hormone-releasing peptide-2 (GHRP-2), which raises the question of what the response may be in human somatotrophs. In the present study, cells were obtained from seven human acromegalic tumours and the effects of GHRP-2 were studied. Cells were dissociated and kept in primary culture for 1-3 weeks before experimentation. Application of GHRP-2 for 30 min induced a significant increase in GH secretion from the cultured cells from all seven tumours whereas human GH-releasing hormone (hGHRH) at a dose of 10 nM induced a significant GH release in only four of seven tumours. The intracellular levels of cAMP in all seven tumours were significantly increased by both 10 nM GHRP-2 and GHRH, but the response to GHRH was significantly higher than the response to GHRP-2. The adenylyl cyclase inhibitor, MDL 12330A, blocked the effect of GHRH and GHRP-2 on intracellular cAMP levels, whereas the Ca2+ channel blocker Co2+ (0.5 mM) did not attenuate the cAMP response. For the tumours in which GH secretion was increased by GHRH and GHRP-2, the cAMP antagonist Rp-cAMP blocked the GH response to GHRH but not to GHRP-2. When a protein kinase A (PKA) inhibitor (H89) was applied, GHRH stimulated GH release was blocked, but cAMP accumulation was not affected. The response to GHRP-2 was not altered by H89. Calphostin C [a protein kinase C (PKC) inhibitor] reduced the effect of GHRP-2 on the secretion of GH but did not affect the response to GHRH. Both GHRH and GHRP-2 increased the intracellular Ca2+ concentration in a concentration-dependent manner. We conclude that (1) GHRH increases GH secretion from human GH tumours via the cAMP pathway whereas GHRP-2 increases GH secretion mainly via the PKC pathway; (2) GHRH increases cAMP (without GH release) in a subset of tumours whereas GHRP-2 increases cAMP levels (slightly) and GH secretion in all tumours; and (3) GHRP-2 and GHRH do not act on the same receptor on human somatotrophs derived from acromegalic tumours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2826.1998.00233.x | DOI Listing |
PLoS One
July 2016
Ningxia Xiahua Muslim Food Co. Ltd., Zhongwei, Ningxia, P.R. China.
Eur J Endocrinol
January 2014
Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905, USA.
Objective: Estrogen stimulates pulsatile secretion of GH, via mechanisms that are largely unknown. An untested hypothesis is that estradiol (E₂) drives GH secretion by amplifying interactions among GH-releasing hormone (GHRH), somatostatin (SS), and GH-releasing peptide (GHRP).
Design: The design comprised double-blind randomized prospective administration of transdermal E₂ vs placebo to healthy postmenopausal women (n=24) followed by pulsatile GHRH or SS infusions for 13 h overnight with or without continuous GHRP2 stimulation.
Am J Physiol Regul Integr Comp Physiol
May 2013
Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, MN 55905, USA.
Pulsatile growth hormone (GH) secretion putatively reflects integrated regulation by GH-releasing hormone (GHRH), somatostatin (SST), and GH-releasing peptide (GHRP). GHRH and SST secretion is itself pulsatile. However, how GHRH and SST pulses act along with GHRP to jointly determine pulsatile GH secretion is unclear.
View Article and Find Full Text PDFEndocr J
July 2013
Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
The arginine + GHRH test has been established as an alternative to the insulin tolerance test (ITT) for the diagnosis of adult GH deficiency (AGHD). However, the glucagon, arginine, and GH releasing peptide-2 (GHRP-2) test are recommended as alternatives in Japan. The objective of this study was to evaluate the arginine and GHRP-2 tests as alternatives to the ITT for the diagnosis of AGHD in a Japanese population.
View Article and Find Full Text PDFMethods Enzymol
February 2013
Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
The most important initial historical time points in the development of the enlarging ghrelin system were 1973, 1976, 1982, 1984, 1990, 1996, 1998, and 1999. At these respective times, the following occurred sequentially: isolation of somatostatin, discovery of unnatural growth-hormone-releasing peptides (GHRPs), isolation of growth-hormone-releasing hormone (GHRH), hypothesis of a new natural GHRP different from GHRH, GHRP+GHRH synergism in humans, discovery of the growth hormone secretagogue GHS/GHRP receptor, cloning of the receptor, and finally, isolation and identification of the new natural endogenous GHRP ghrelin. To understand the pharmacology and probably also the physiological regulation of growth hormone (GH) secretion, an important finding was that GHRP increased pulsatile GH secretion in children as well as normal younger and older men and women.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!