Multiple alignment of several isozyme sequences of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase revealed conserved residues in the 2-kinase domain. Among these residues, three asparagine residues (Asn76, Asn97 and Asn133; numbering refers to the liver isozyme sequence) and three threonine residues (Thr132, Thr134 and Thr135) are located near the fructose 6-phosphate-binding site in the crystal structure of the bifunctional enzyme. The role of these residues in substrate binding and catalysis in the 6-phosphofructo-2-kinase domain has been studied by mutagenesis to alanine. Since the crystal structure of 6-phosphofructo-2-kinase does not contain fructose 6-phosphate, this substrate was docked into the putative binding site by computer modelling, and its interactions with the protein were predicted. Analysis of the mutagenesis-induced changes in kinetic properties and of the substrate-docking model revealed that all these residues are directly or indirectly involved in fructose-6-phosphate binding. All the mutants displayed an increased Km for fructose 6-phosphate (10-200-fold). We propose that Asn133 stabilises Arg138, which itself makes a direct electrostatic bond with the 6-phosphate group of fructose 6-phosphate, that Asn76 interacts with the C3 hydroxyl group of fructose 6-phosphate, that Thr132 makes a hydrogen bond with the C6 oxygen of this substrate, and that Thr134 interacts with two residues involved in fructose-6-phosphate binding, Thr132 and Tyr199. On the other hand, Asn97 and Thr135 play structural roles, by maintaining the structure of the fructose-6-phosphate-binding pocket.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1327.1998.2540490.xDOI Listing

Publication Analysis

Top Keywords

fructose 6-phosphate
16
2-kinase domain
8
bifunctional enzyme
8
crystal structure
8
involved fructose-6-phosphate
8
fructose-6-phosphate binding
8
group fructose
8
residues
7
fructose
5
6-phosphate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!