Object: Intrathecal bolus administration of (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)aminio]diazen++ +-1-ium-1,2-diolate (DETA/NO), a long half-life diazeniumdiolate-class nitric oxide (NO) donor, was evaluated for safety and efficacy in the treatment of delayed cerebral vasospasm in a canine model of subarachnoid hemorrhage (SAH).

Methods: The baseline basilar artery (BA) diameter of 25 dogs was measured with the aid of angiography on Day 0. Vasospasm was then induced by intracisternal injection of autologous arterial blood on Days 0 and 2. Repeated arteriography on Day 7 revealed an average BA diameter of 58% of baseline. Each dog was then randomized to one of four groups: a pathology control group (SAH only, four animals); a treatment control group (SAH plus 2 micromol of the inactive drug carrier DETA, eight animals); a low-dose treatment group (SAH plus 0.2 micromol DETA/NO, six animals); or a high-dose treatment group (SAH plus 2 micromol DETA/NO, six animals). The drugs were administered in a 2-ml intrathecal bolus via the cisterna magna. Arterial caliber was monitored by angiography over the subsequent 4 hours. A 2-micromol dose of the drug was then given and serial arteriography continued for an additional hour to screen for tachyphylaxis. Intracranial pressure and respiratory and hemodynamic parameters were continuously monitored. Histopathological analyses of the animals' brains were performed after the dogs were killed on Day 8. The drug DETA/NO produced reversal of vasospasm in a dose-dependent fashion that roughly followed a double exponential time course. Doses of 2 micromol DETA/NO resulted in restoration of the angiographically monitored BA diameter to the prevasospasm size at 1.5 hours posttreatment, and this was sustained at 88% of baseline at 4 hours (p < 0.01, independent samples t-test). By contrast, the treatment control group remained on average at 54% of baseline diameter. The low-dose treatment group achieved only partial and more transitory relaxation. Histopathological analyses showed findings consistent with chronic SAH but did not demonstrate any toxicity associated with the NO donor. No adverse physiological changes were seen.

Conclusions: This study indicates that long-acting NO donors are potentially useful as agents to restore circulation in patients suffering from cerebral vasospasm.

Download full-text PDF

Source
http://dx.doi.org/10.3171/jns.1998.89.2.0279DOI Listing

Publication Analysis

Top Keywords

group sah
16
cerebral vasospasm
12
control group
12
sah micromol
12
treatment group
12
micromol deta/no
12
nitric oxide
8
oxide donor
8
intrathecal bolus
8
treatment control
8

Similar Publications

Background: Proton pump inhibitors (PPIs) are commonly used for managing gastroesophageal disorders but concerns about their potential association with increased stroke risk have emerged, especially among patients with pre-existing cardiovascular conditions such as acute coronary syndrome (ACS). This systematic review and meta-analysis aim to assess the risk of stroke associated with PPI use, stratified by the presence or absence of pre-existing CVD.

Methods: This review was conducted following the PRISMA guidelines and included studies up to March 2024 from PubMed, Embase, and Web of Science.

View Article and Find Full Text PDF

Cannabis consumption and risk of asthma: a systematic review and meta-analysis.

BMC Pulm Med

January 2025

Global Health and Infectious Diseases Control Institute, Nasarawa State University, Keffi, Nigeria.

Background: Cannabis is the third most widely used psychoactive substance globally, and its consumption has been increasing, particularly with the growing trend of legalization for medicinal and recreational use. Recent studies have raised concerns about the potential impact of cannabis on respiratory health, specifically the risk of asthma, a significant public health concern. This systematic review aimed to consolidate research on the association between cannabis use and the risk of asthma.

View Article and Find Full Text PDF

Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid.

View Article and Find Full Text PDF

KOBu-Promoted [3 + 2] Cycloaddition of Dimethyl Sulfoxide with Fullerenes.

Org Lett

January 2025

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.

KOBu-promoted [3 + 2] cycloaddition of dimethyl sulfoxide (DMSO) with fullerenes has been developed for facile and efficient one-pot synthesis of 1,2,3,4-cyclic sulfoxide-fused [60]/[70]fullerene dihydrides, which offers a versatile platform for the site-selective preparation of various fullerene multiadducts with a wide range of functional groups. The utility of these tetra-functionalized fullerenes is demonstrated by the successful application as electron-transport materials in perovskite solar cells.

View Article and Find Full Text PDF

Background And Objective: Lyme disease, caused by , presents major health challenges worldwide, leading to serious neurological and musculoskeletal issues that impact patients' lives and healthcare systems. This systematic review and meta-analysis aim to determine the prevalence and link between Lyme disease and these complications, aiming to enhance clinical and public health approaches.

Methods: We systematically searched PubMed, EMBASE, and Web of Science up until April 01, 2024, to find studies reporting the prevalence and severity of neurological and musculoskeletal complications associated with Lyme disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!